
•  Initial prototype modifies Rocket to track L1 data cache contention for a
single “secure domain” in the entire system.

HARDWARE CONTENTION COUNTERS
AUSTIN HARRIS

SIDE & COVERT CHANNELS

TRADITIONAL PERFORMANCE COUNTERS

CACHE CONTENTION COUNTER PROTOTYPE

FUTURE WORK

DETECTING AN EAVESDROPPER

•  [2] shows an intelligent detector “Claude” that is able to detect a co-resident
eavesdropper “Eve” attempting to exploit these channels using existing x86
performance counters (e.g. cache misses.)

•  Claude can periodically run and check for the presence of Eve.
•  Claude’s behavior forces Eve to limit contention in an attempt to evade

detection.
•  Thus it is difficult for Claude to differentiate between events within the

detection application (or within the O/S on behalf of Claude) with those due to
the malicious activity of Eve.

•  Support for tracking more than one secure domain.
•  O.S. support to save/restore counters (perf, etc. support?)
•  Defense mechanism when an eavesdropper is detected.
•  Applications to QoS?
Contention tracking for other resources:
•  Last-Level Cache, Memory Bus, DRAM System
•  Branch Predictor, Functional Units

•  Existing counters don’t differentiate events due to contention with another
thread and those intrinsic to the application.

•  Code instrumentation has been used to estimate contention [1] among threads
in a multi-core system to eliminate false-sharing with an overhead of ~5x.

References:	
	 [1]	 Qin	 Zhao,	 David	 Koh,	 Syed	 Raza,	 Derek	 Bruening,	 Weng-‐Fai	 Wong,	 and	 Saman	 Amarasinghe.	 Dynamic	 cache	 contenEon	 detecEon	 in	 mulE-‐threaded	 applicaEons.	 In	 Proceedings	 of	 the	 7th	 ACM	 SIGPLAN/SIGOPS	 Inter-‐	 naEonal	 Conference	 on	 Virtual	
ExecuEon	 Environments,	 VEE	 ’11,	 pages	 27–38,	 New	 York,	 NY,	 USA,	 2011.	 ACM.	 [2]	 C.	 Hunger,	 M.	 Kazdagli,	 A.	 Rawat,	 A.	 Dimakis,	 S.	 Vishwanath,	 and	 M.	 Tiwari.	 Understanding	 contenEon-‐based	 channels	 and	 using	 them	 for	 defense.	 In	 High	 Performance	
Computer	 Architecture	 (HPCA),	 2015	 IEEE	 21st	 InternaEonal	 Symposium	 on,	 pages	 639–650,	 Feb	 2015.	

	

•  A side channel occurs when a sensitive application inadvertently leaks
information to a co-resident attacker through contention over shared micro-
architectural resources.

•  A covert channel occurs when a malicious application (e.g. document reader)
intentionally sends sensitive data to a co-resident process.

•  These channels can be used by attackers in the cloud (e.g. EC2) who get
allocated to the same instance as the victim.

OVERVIEW OF RISC-V MODIFICATIONS

O.S./Toolchain:
•  Addition of protected secure domain control-status register (CSR).
•  System call to enable/disable secure domain mode.
•  O/S support to save/restore secure domain CSR.
Rocket:
•  Cache line ownership bits added to L1 tag store meta-data.
•  Uarch0-2 CSRs purposed for cache counters.

LINUX MODIFICATIONS •  Evaluated on a Zedboard, configured with a 4-way, 32 set L1 D-cache.
•  Easy for Eve to lower contention and hide within the noise with traditional cache

miss counter.
•  Contention cache counter clearly differentiates isolated execution and

concurrent execution with Eve, even when Eve attempts to hide in the noise.

EVALUATION OF L1 COVERT CHANNEL DETECTION

•  Save/restore of secure domain CSR using pt_regs added to entry.S.
•  System-call to set pt_regs->secure_domain.
•  Enforces that only one alive process can be the secure-domain .

ROCKET MODIFICATIONS TO TRACK L1 CONTENTION
•  L1 meta-data contains bit to track secure domain ownership
•  Traditional L1 cache miss counter incremented on each MSHR

allocation.
•  Contention cache counter incremented when unsecure domain replaces

a secure domain line.
•  Alternate cache contention counter incremented when secure domain

allocates a line to a set last owned by the unsecure domain.

