
•  Initial prototype modifies Rocket to track L1 data cache contention for a 
single “secure domain” in the entire system.  
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DETECTING AN EAVESDROPPER 

•  [2] shows an intelligent detector “Claude” that is able to detect a co-resident 
eavesdropper “Eve” attempting to exploit these channels using existing x86 
performance counters (e.g. cache misses.) 

•  Claude can periodically run and check for the presence of Eve. 
•  Claude’s behavior forces Eve to limit contention in an attempt to evade 

detection. 
•  Thus it is difficult for Claude to differentiate between events within the 

detection application (or within the O/S on behalf of Claude) with those due to 
the malicious activity of Eve. 

•  Support for tracking more than one secure domain. 
•  O.S. support to save/restore counters (perf, etc. support?) 
•  Defense mechanism when an eavesdropper is detected. 
•  Applications to QoS? 
Contention tracking for other resources: 
•  Last-Level Cache, Memory Bus, DRAM System 
•  Branch Predictor, Functional Units 

•  Existing counters don’t differentiate events due to contention with another 
thread and those intrinsic to the application. 

•  Code instrumentation has been used to estimate contention [1] among threads 
in a multi-core system to eliminate false-sharing with an overhead of ~5x. 
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•  A side channel occurs when a sensitive application inadvertently leaks 
information to a co-resident attacker through contention over shared micro-
architectural resources. 

•  A covert channel occurs when a malicious application (e.g. document reader) 
intentionally sends sensitive data to a co-resident process. 

•  These channels can be used by attackers in the cloud (e.g. EC2) who get 
allocated to the same instance as the victim. 

OVERVIEW OF RISC-V MODIFICATIONS 

O.S./Toolchain: 
•  Addition of protected secure domain control-status register (CSR). 
•  System call to enable/disable secure domain mode. 
•  O/S support to save/restore secure domain CSR. 
Rocket: 
•  Cache line ownership bits added to L1 tag store meta-data. 
•  Uarch0-2 CSRs purposed for cache counters. 

LINUX MODIFICATIONS •  Evaluated on a Zedboard, configured with a 4-way, 32 set L1 D-cache. 
•  Easy for Eve to lower contention and hide within the noise with traditional cache 

miss counter. 
•  Contention cache counter clearly differentiates isolated execution and 

concurrent execution with Eve, even when Eve attempts to hide in the noise. 

EVALUATION OF L1 COVERT CHANNEL DETECTION 

•  Save/restore of secure domain CSR using pt_regs added to entry.S. 
•  System-call to set pt_regs->secure_domain. 
•  Enforces that only one alive process can be the secure-domain . 

ROCKET MODIFICATIONS TO TRACK L1 CONTENTION 
•  L1 meta-data contains bit to track secure domain ownership 
•  Traditional L1 cache miss counter incremented on each MSHR 

allocation. 
•  Contention cache counter incremented when unsecure domain replaces 

a secure domain line. 
•  Alternate cache contention counter incremented when secure domain 

allocates a line to a set last owned by the unsecure domain. 


