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Abstract—Behavioral malware detectors, by using statistical
methods, promise to expose previously unknown malware and
are an important security primitive. However, even the best be-
havioral detectors suffer from high false positives and negatives.
In this paper, we address the challenge of aggregating weak
per-device behavioral detectors (local detectors or LDs) in noisy
communities (i.e., ones that produce alerts at unpredictable rates)
into an accurate and robust global anomaly detector (GD).

Our system — Shape GD - combines two insights: Structural:
actions such as visiting a website (waterhole attack) or member-
ship in a shared email thread (phishing attack) by nodes correlate
well with malware spread, and create dynamic neighborhoods of
nodes that were exposed to the same attack vector; and Stafistical:
feature vectors corresponding to true and false positives of local
detectors have markedly different conditional distributions - i.e.
their shapes differ. We use neighborhoods to amplify the transient
low-dimensional structure that is latent in high-dimensional
feature vectors — but neighborhoods vary unpredictably, and
we use shape to extract robust neighborhood-level features that
identify infected neighborhoods.

Unlike prior works that aggregate local detectors’ alert bit-
streams or cluster the feature vectors, Shape GD analyzes the
feature vectors that led to local alerts (alert-FVs) to separate true
and false positives. Shape GD first filfers these alert-FVs into
neighborhoods and efficiently maps a neighborhood’s alert-FVs’
statistical shapes into a scalar score (‘ShapeScore’). Shape GD
then acts as a neighborhood level anomaly detector — training on
benign program traces (e.g., from developers’ test inputs) to learn
the ShapeScore of false positive neighborhoods, and classifying
neighborhoods with anomalous ShapeScores as malicious.

We evaluate Shape GD by emulating a large community of
Windows systems — using system call traces from a few thousand
malware and benign applications and simulating a phishing
attack in a corporate email network and a waterhole attack
through a popular website. In both these scenarios, we show
that Shape GD detects malware early (~100 infected nodes in a
~100K node system for waterhole and ~10 of 1000 for phishing)
and robustly (with ~100% global TP and ~1% global FP rates).

I. INTRODUCTION

Behavioral detectors are a crucial line of defense against
malware. By extracting features out of network [1]-[4], system
calls [5]-[7], instruction set [8], [9], and hardware [10]-
[12] level actions, behavioral detectors train machine learn-
ing algorithms to classify program binaries [13] and exe-
cutions [10], [11] as either malicious or benign. Behavioral
detectors are a widely deployed defensive technique [14] in
fast-changing environments where new systems and sensors

shakkott@austin.utexas.edu tiwari @austin.utexas.edu

@ Malicious, alert @ Malicious, no alert
QO Benign, no alert @ Benign, alert

Local ., Neighborhood | %, - "
g
Detector g}@,a),?@ Score E‘“ | J‘Hn‘
Random ———> Wasserstein K N 3 ol s
jasserstoin distance
forest *. distance
G A Binary classifier
PES
., time
Community with dynamic Alert feature vectors Shape-based

neighborhoods filtered by neighborhood Global Detector

Fig. 1. (L to R) Each circle is a node that runs a local malware detector
(LD). Our goal is to create a robust global detector (GD) from weak LDs. We
observe that nodes naturally form neighborhoods based on attributes relevant
to attack vectors — e.g., all client devices that visit a website W within the
last hour belong to neighborhood N B,,, or all users who received an email
from a mailing list M in the last hour belong to neighborhood N B,,. We
propose (a) a GD that analyzes feature vectors (FVs) from each node, instead
of only LD alerts, and further filters the FVs based on neighborhoods; and
(b) a ‘Shape GD’ algorithm that exploits a new insight — the conditional
distribution of true positive FVs differs from false positive FVs — to robustly
classify neighborhoods as malicious.

drive previously unseen ‘zero-day’ malware that bypass known
threat models and formal specifications — such as abuse of
new permissions in Android [15], row-hammer attacks on
DRAMSs [16], [17], accelerometers [18] in addition to bugs
in trusted codebases [19].

However, behavioral detectors are weak — i.e., have high
false positives and negatives. One reason is that a large class
of benignware and malware have very similar behaviors — such
as accessing users’ files, encrypting users’ data and code at
run-time, and making web/HTTP requests. Another reason for
weak detectors is that malware developers adapt to deployed
detectors — e.g., by generating malware that specifically evades
behavioral detectors [20], [21]. Deploying behavioral detectors
can thus create a large stream of alerts that drive expensive
program analyses or human analysts — boosting weak malware
detectors is thus an important problem.

Much prior research has focused on improving malware
detectors deployed locally on each machine (e.g., [5], [22],
[23]). This includes engineering better features (n-grams,
histograms, markov models etc of system calls and network



traffic) and composing them using ensemble methods [12] —
our results show that even the best local detectors (LDs) based
on prior work [5] have ~ 6% false-positives and 92.4% true-
positives.

Complementary research proposes a global detector (GD)
that uses the outputs of a community of local detectors
to boost the detection and false positive rate [24]. Such
collaborative intrusion detection systems (CIDSs) rely on
global detectors to generate a global alert if a significant
number of local detectors are raising an alert [25] — we
term these Count GDs. Alternatively, the global detectors
combine feature vectors using some distance metric resulting
in clusters, and interpret some clusters as outliers for human
analysts to analyze further [26], [27]. Variants of these count-
and clustering-based GDs are deployed by security companies
such as Cisco [28], Dell [29], Facebook [30], etc.

Challenges for related work. Current global detectors are
hamstrung primarily because (1) Count GDs are extremely
fragile when the communities of LDs are even slightly noisy
— i.e., communities whose membership (and thus the number
of feature vectors within a time window) varies unpredictably,
and (2) clustering high-dimensional data is ineffective when
the signal is weak in early stages of infection.

Communities of LDs are extremely noisy. For example, a
GD that monitors visits to risky or uncommon websites will
miss feature vectors from employee-devices that visit the risky
websites from outside the corporate network — a Count GD
would thus under-estimate the intensity of alerts if calibrated
with the employee-device in the network, or over-estimate
the alert intensity if calibrated without the employee-device.
Further, employees that opt to not report detailed logs due
to privacy concerns, devices that go out of range, device or
network failures, etc can all add noise to a GD’s estimates of
feature vectors expected in a community.

Any noise in estimating the number of feature vectors
in the community linearly affects global decision thresholds
and hence has a significant affect on the global false pos-
itive/negative rate. This linear scaling is debilitating — for
example, our case studies of phishing and waterhole attacks
show that underestimating community size by even 2% (or
overestimating by 14%) leads to almost 100% false positives
(respectively, almost 0% true positives) in a count-based GD
system (Section VII-E). Our goal thus is to aggregate weak
LDs in noisy communities in a robust manner.

Similarly, clustering schemes are well-known to be
highly sensitive to noise, especially in the high-dimensional
regime [31]-[33]. Indeed, classical approaches that attempt
to detect or to score outlyingness of points (e.g. Stahel-
Donoho outlyingness, Mahalanobis distance, minimum
volume ellipsoid, minimum covariance determinant, etc) are
fundamentally flawed in the high-dimensional regime (i.e.,
theoretically cannot guarantee correct detection with high
probability). In practice, we see this in prior work [27] where
clustering is used primarily as a first-level analysis to discover
malicious incidents for a human analyst (i.e. requires lower

accuracy than a global detector). In Section VII-F we find
that a clustering GD yields an AUC metric of only ~ 48%
against waterhole attack and phishing attacks.

Proposed Ideas — Neighborhood filtering and Shape. CIDSs
aggregate a community of local detectors. We define a commu-
nity as a set of nodes that are loosely correlated based on real-
world attributes such as a common employer or occupation
(e.g., all employees in a company), membership in a mailing
list or work group (such as a department in an enterprise) or
even a social network group. In our setting, the CIDS thus does
not need to know community sizes precisely, hence even weak
community detection algorithms are admissible [34], [35].
Within a community, we introduce a finer-grained notion of
a neighborhood — a set of nodes that share an action attribute
such as having visited a common website or received emails
from the same source within a neighborhood time window
(NTW). Action attributes that determine neighborhoods are
defined statically by an analyst based on common atfack vec-
tors — neighborhoods are then instantiated dynamically at run-
time. Thus, neighborhoods are dynamic sub-communities of
nodes that are likely to be exposed to a similar attack vector —
e.g., a compromised web-server or a malicious phishing email
(see Figure 1 for an illustration with three neighborhoods).
Neighborhood filtering. For early detection of malware
spread, we propose that the GD aggregate LDs’ outputs per-
neighborhood instead of per-community. An attack vector —
such as a popular web-server used to distribute exploits in
a waterhole attack — is more likely to exploit nodes along
neighborhood lines — i.e., nodes that visited the compromised
server in the current time window — compared to an arbitrary
node in the community that may get compromised in later
stages of an infection. A similar argument can be made for
phishing attacks — a neighborhood of nodes that received
emails from a common source in the current NTW are more
likely to be compromised (true positives) than arbitrary nodes
(that are more likely to be false positives). Neighborhood
filtering exploits this latent structure that creates dynamic
neighborhoods within a community. Most importantly, since
neighborhoods are smaller than the overall community, we
show that a GD can identify infected neighborhoods as anoma-
lies much quicker than identifying the entire community as
anomalous. At the same time, neighborhoods are even more
noisier to estimate than communities — this motivates our
Shape GD algorithm.
Shape GD. We propose a new GD algorithm (‘Shape GD’)
that analyzes feature vectors (FVs) that lead to local detector
alerts — alert-FVs — instead of operating only on the LDs’
time-series of 1-bit alerts. Our key insight is that a GD can
separate true positive neighborhoods from false positive ones
by comparing the distributional shape of alert-FVs from each
neighborhood. Specifically, Shape GD does not look at all
FVs generated in a neighborhood, but only those that cause
alerts by the LDs. This alert filtering, we show, has two
key properties: (i) the distribution of the alert-FVs strongly
separates malicious and benign neighborhoods (essentially, it



separates the true positive alert-FVs from false positive alert-
FVs), and (ii) is robust to noise in the neighborhood size
estimates.

Such a shape-based GD requires a quantitative score
function that maps a set of alert-FVs from a neighborhood
into a scalar value (the neighborhood’s ‘ShapeScore’) that can
then be used to train a GD classifier. We propose an efficient
method to compute ShapeScores, and show that (given
sufficient FV samples) our Shape GD can detect malicious
neighborhoods with less than 1.1% and 2% compromised
nodes per neighborhood (in two case studies involving
waterhole and phishing attacks respectively), at a false
positive and true positive rate of 1% and 100% respectively.

Contributions. To summarize, neighborhood filtering enables
structural information about attack vectors to be captured
in an algorithmically amenable setting — while Shape GD
separates conditional FV distributions from variable-sized
neighborhoods to identify the ones that show early stages of
malware infection. Our specific contributions are as follows.

o Neighborhood filtering and Shape GD algorithms that
exploit a new property — the statistical ‘shape’ of a
neighborhood separates the ones with true positives from
those with false positives — for early and robust malware
detection in noisy neighborhoods.

e An efficient CIDS - comprising random forest LDs
and a Shape GD that computes ShapeScores using the
Wasserstein distance between neighborhoods’ alert-FV
distributions and a reference distribution (built on false
positive FVs) — that can identify malicious neighborhoods
using only 15,000 FVs (roughly 15 seconds of FV data
from a 1000-node neighborhood).

« Phishing case study. Shape GD detects a phishing attack
with 1% false positive rate in a medium size enterprise
network with a neighborhood of 1086 nodes when only
17.08 nodes (using temporal neighborhoods) and 4.48
nodes (with additional mailing-list based structural fil-
tering) are infected.

o Waterhole attack case study. Shape GD detects a wa-
terhole attack with 1% false positive rate when only
107.5 nodes (using temporal neighborhoods) and 139.9
(with additional server specific structural filtering) out of
possible ~ 550,000 nodes are infected.

We finally remark that the LD and GD false positives (FPs)
have very different interpretations. In a phishing attack, an LD
FP of 1% in a neighborhood of 1000 nodes means that we will
get about 10 FP alerts per second. The Shape GD, on the other-
hand, uses these LD FP alerts for decision making. Thus a GD
false positive occurs when it misclassifies a neighborhood of
LD alerts — a much rarer scenario.

Specifically, a GD FP rate of 1% means that in our phishing
attack scenario, we will receive a global false alert about once
every 100 - 300 hours. Similarly, in the waterhole scenario
a global false positive occurs every 100 sec. Comparing the
number of LDs’ FPs that are reported to a GD in a Count GD v.
Shape GD, temporal neighborhood filtering reduces total FPs

by ~100x (phishing) and ~200x (waterhole), while adding
structural filtering reduces total FPs by ~1000x and ~830x
respectively (see Section VIII for details).

II. OVERVIEW OF SHAPE GD

We begin with a baseline CIDS that deploys local detectors
(LDs) at each device and a global detector (GD) that receives
alerts and other metadata from the local detectors. The LD
at each node transforms its input signal into an alert time
series. This transformation consists of two steps: (a) Generate
Feature Vectors: convert the raw OS system calls trace into
a feature vector (FV) time series, and (b) Generate Alerts:
Determine if each FV is malicious or not using a local detector
(typically through random forests, SVM, etc.). osquery [30]
based CIDSs are a good example of CIDSs that we study.
Inferring neighborhoods from common attack vectors.
Shape GD operates over dynamic neighborhoods (updated
once every NTW). Neighborhoods are a set of nodes that share
a statically defined action attribute — this allows an analyst
to create neighborhoods of nodes based on common attack
vectors. Below are three illustrative examples of communities
and neighborhoods.

1. Waterhole attack. The community here consists of the
employees of an enterprise such as Anthem Health [36],
[37]. In a waterhole attack, adversaries compromise a website
commonly visited by such employees as a way to infiltrate
the enterprise network and then spread within the network
to a privileged machine or user. Within this community, the
neighbor of a node (user/machine) is the set of nodes that
visited the same websites within the current neighborhood time
window (NTW). Specifically, if nodes A and B visit website
X within the current neighborhood time window, they are said
to be neighbors.

2. Phishing attack over enterprise email networks. The com-
munity here consists of all employees within an enterprise. A
phishing attack here would typically spread over email and use
a malicious URL to lure nodes (users) to drive-by-download
attacks [38], [39] or spread through malicious attachments.
Here, a specific user’s neighbors are that subset of users
with whom she/he exchanged emails with during the current
neighborhood time window (NTW).

3. Physical hardware attack. A community here consists of
all machines in a workplace that are physically proximal (e.g.
machines in a specific hospital or bank). The potential attack
mode here is through physical hardware such as badUSB. The
neighborhood of a node is simply all other nodes that were
connected to similar external hardware (e.g. a USB drive) over
the current neighborhood time window.

Similar correlations (leading to natural notions of commu-
nity and neighborhood) exist in attacks that target specific
app-stores (e.g., the key-raider attack in the Cydia app-store
or the malicious Xcode attacks due to compromised mirror
sites) — these attacks also affected users with specific attributes
(membership in a store or downloaded Xcode from specific
sites) more likely than a random user in the network.
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Fig. 2. (Shape of conditional distributions) The top left figure is the

probability density function (pdf) of a benign FV, here a Gaussian with mean
‘-17; and the top right figure is the pdf for a malware FV, here a Gaussian with
mean‘+1’. The optimal local detector at any node would declare *malware’
if a sample’s value is positive, and declare ’benign’ if a sample’s value is
negative. The bottom plots shows the pdfs of the same Gaussians but now
conditioned on the event that the sample is positive. This is the pdf of the
filtered FV, i.e, a sample that is chosen to be positive (and negative samples
are deleted). This filtering corresponds to the action of the local detector at
each node, which tags a sample as 'malware’ if and only if the sample is
positive. After LD filtering, note that the pdfs (corresponding to FP and TP
FVs respectively) have different shapes.

These popular attack scenarios, while different in their in-
fection mechanisms, all exhibit community and neighborhood
correlations — if a user has malware, his/her neighbor is more
likely to have malware than a randomly chosen node.

A. Intuition behind Shape GD

There are two parts to our algorithm. (i) Neighborhood
correlations matter — common actions and attack vectors sta-
tistically correlate nodes and thus implicitly define suspicious
neighborhoods. However, these correlations are transient and
unpredictable. (ii) The statistical shape of local detectors’ false
positives (FP conditional distribution) differs from the corre-
sponding shape for true positives (TP conditional distribution)
— we use this property to aggregate LDs’ alert-FVs to find the
shape of each neighborhood and then classify neighborhoods
based on their shapes.

The central question then is — why do true- and false-
positive FVs’ shapes differ? To explain this and set the stage
for Shape GD, we consider a stylized statistical inference
example. Suppose that we have an unknown number of nodes
within a neighborhood. We want to distinguish between two
extremes — all nodes only run benign applications (benign
hypothesis), or all nodes are running malware (malware hy-
pothesis). We look at a single snapshot of time where each
node generates exactly one feature vector. Under the benign
hypothesis, assume that the feature vector from each node is
a (scalar valued) sample from a standard Gaussian with mean
of ‘-1’; alternatively it is standard Gaussian with mean of ‘+1’
under the malware hypothesis.

(a) Noisy local detectors: Given one sample (i.e., FV from
one node), the best local detector is a threshold test: is the
sample’s value above zero or below? For this example, the
probability of a false positive is (about) 15%.

(b) Aggregating local detectors over neighborhoods: Sup-
pose there are 100 nodes and all of them report their value,
and we are told that 90 of them are greater than 0 (i.e.,
90 of the local detectors generate alerts). In this case, the
expected number of alerts under the benign hypothesis is 15;
and 85 under the malware hypothesis. Thus, we can conclude
with overwhelming certainty (10~° chance of error) that 90
alerts indicate an infected neighborhood. This corresponds
to a conventional threshold algorithm that count the number
of alarms in a neighborhood and compares with a global
threshold (here this threshold is 50).

(c) Count without knowing neighborhood size: Suppose,
now, that we do not know the number of nodes (i.e., neighbor-
hood size is unknown), and only know that there are a total of
90 alerts. In other words, out of the neighborhood of nodes,
some 90 of them whose samples were positive reported so.
What can we say? Unfortunately we cannot say much — if there
were 100 nodes in neighborhood, then malware is extremely
likely; however, if there were 1000 total nodes, then with 90
alerts, it is by far (exponentially) more likely that we have no
infection. Because we do not know the neighborhood size, the
global threshold cannot be computed.

(d) Robustness of Shape: While the number of alerts alone
is uninformative, we can resolve whether the neighborhood is
a ‘false positive’ or ‘true positive’ by considering the actual
values of the 90 random variables corresponding to these
alerts. These values represent independent draws from a condi-
tional distribution — either the distribution of a normal random
variable of mean '—1° conditioned on taking a nonnegative
value, or the distribution of a normal random variable of mean
*+1’ conditioned on taking a nonnegative value (see Figure 2).
This conditioning occurs because of the local detector — recall
it tags a sample as an alert if and only if the sample drawn was
nonnegative (optimal LD in this example). Thus, irrespective
of the size of the neighborhood, the global detector would
“look at the shape” of the empirical distribution (i.e. the
distribution constructed from the received samples) of the
received samples (FVs). If this were “closer” to the left rather
than the right plot in Figure 2, it would declare “uninfected”;
otherwise declare “infected”.

B. From Intuition to Algorithm Design

While the simple example highlights the resolving power of
conditional distributions of feature vectors for distinguishing
between TPs and FPs, to use this insight in practical CIDSs,
we need to address two issues: (i) while the two figures in
Figure 2 are visually distinct, an algorithmic approach requires
a quantitative score function to separate between the (vector-
valued) conditional distributions generated from feature vector
samples; and (ii) the global detector receives only finitely
many samples; thus, we can construct (at best) only a noisy
estimate of the conditional distribution.



We develop ShapeScore — a score function based on the
Wasserstein distance [40] to resolve between conditional dis-
tributions. We choose Wasserstein distance because it has well-
known robustness properties to finite-sample binning [41],
[42], was more discriminative than L1/L2 distances in our
experiments, and yet is efficient to compute for vectors.

Given a collection of feature vector samples, we construct
an empirical (vector) histogram of the FV samples, and
determine the Wasserstein distance of this histogram with
respect to a reference histogram. This reference histogram is
constructed from the feature vectors corresponding to the false
positives of the local detectors. In other words, this reference
histogram captures the statistical shape of the “failures” of the
LDs —i.e., those FVs that the LD classifies as malicious even
though they arise from benign applications. We discuss this
further in Section IV.

If we had the idealized scenario of infinite number of
feature vector samples, the ShapeScore would be uniquely and
deterministically known. In practice however, we have only a
limited number of feature vector samples; thus ShapeScore is
noisy. Figure 4 tests its robustness with Windows benign and
malicious applications (see Section VII for details), where the
ShapeScore is computed from neighborhood sizes of 15,000
FVs (about 15 seconds of data from 1000 nodes). The key
observation is the strong statistical separation between the
ShapeScores for the TP and FP feature vectors respectively,
thus lending credence to our approach. Importantly, both these
ideas do not depend on a fixed size of the neighborhood (or
even knowing the neighborhood size); thus they provide a new
lens to study malware at a global level.

III. RELATED WORK

A. Behavioral analysis

Behavioral analysis refers to statistical methods that monitor
signals from program execution, extract features and build
models from these signals, and then use these models to
classify processes as malicious. Importantly, as we discuss
in this section, all known behavioral detectors have a high
false positive and negative rate (especially when zero-day and
mimicry attacks are factored in).

System-calls and middleware API calls have been studied
extensively as a signal for behavioral detectors [5], [7], [22],
[43]-[46]. Network intrusion detection systems [2] analyze
network traffic to detect known malicious or anomalous behav-
iors. More recently, behavioral detectors use signals such as
power consumption [47], CPU utilization, memory footprint,
and hardware performance counters [10], [11].

Detectors then extract features from these raw signals. For
example, an n-gram is a contiguous sequence of n items that
captures total order relations [5], [48], n-tuples are ordered
events that do not require contiguity, and bags are simply
histograms. These can be combined to create bags of tuples,
tuples of bags, and tuples of n-grams [5], [43] often using
principal component analysis to reduce dimensions. Further,
system calls with their arguments form a dependency graph

structure that can be compared to sub-graphs that represent
malicious behaviors [22], [45], [49].

Finally, detectors train models to classify executions into
malware/benignware using supervised (signature-based) or
unsupervised (anomaly-based) learning. These models range
from distance metrics, histogram comparison, hidden markov
models (HMM), and neural networks (artificial neural net-
works, fuzzy neural networks, etc.), to more common clas-
sifiers such as kNN, one-class SVMs, decision trees, and
ensembles thereof.

Such machine learning models, however, result in high false
positives and negatives. Anomaly detectors can be circum-
vented by mimicry attacks where malware mimics system-calls
of benign applications [44] or hides within the diversity of
benign network traffic [3]. Sommer et al. [3] additionally high-
lights several problems that can arise due to overfitting a model
to a non-representative training set, suggesting signature-based
detectors as the primary choice for real deployments. Unfortu-
nately, signature-based detectors cannot detect new (zero-day)
attacks. On Android, both system calls [50] and hardware-
counter based detectors [10] yield ~20% false positives and
~80% true positives.

Finally, with their ability to extract highly effective features,
deep nets may provide a new way forward for creating novel
behavioral detectors. At the global level, however, what is
needed is a data-light approach for global detection by com-
posing local detectors, tailored to be agile enough to do global
detection in a fast-changing (non-stationary) environment.

B. Collaborative Intrusion Detection Systems (CIDS)

Collaborative intrusion detection systems (CIDS) provide
an architecture where LDs’ alerts are aggregated by a global
detector (GD). GDs can use either signature-based or anomaly-
based [4], [51], or even a combination of the two [52] to
generate global alerts. Additionally, the CIDS architecture can
be centralized, hierarchical, or distributed (using a peer-to-peer
overlay network) [4].

In all cases, existing GDs use some variant of count-based
algorithms to aggregate LDs’ alerts [25], [26]: once the num-
ber of alerts exceeds a threshold within a space-time window,
the GD raises an intrusion alert. In HIDE [4], the global
detector at each hierarchical-tier is a neural network trained
on network traffic information. Worminator [53] additionally
uses bloom filters to compact LDs’ outputs and schedules LDs
to form groups in order to spread alert information quickly
through a distributed system. All count based algorithms are
fragile when the noise is high (in the early stages of an
infection) and when the network size is uncertain. In contrast,
our neighborhood filtering and shape-based GD is robust
against such uncertainty.

Note that distributed CIDSs are vulnerable to probe-
response attacks, where the attacker probes the network to
find the location and defensive capabilities of an LD [54]-
[56]. These attacks are orthogonal to our setting since we do
not have fixed LDs (i.e. all nodes act as LDs).



Algorithm 1: Local Detector

Input : Real-time sequence of executed system calls
Output: Alert-FVs
1 ¢d — LD’s identifier

2 while True do

3 syscall-hist := r-sec histogram of system calls
4 syscall-histpc 4 = project syscall-hist on L-dim
PCA basis

5 label := BinaryClassifier(syscall-hist pca);
6 if label = malicious then

7 alert-FV := syscall-histpc a

8 send < alert-F'V, ¢d > to Shape GD

IV. SHAPE GD ALGORITHM

Our algorithm consists of Feature Extraction (FE),
Local Detector (LD), and the Global Detector (GD). Our
key innovations are in the Global Detector, however, we
describe each of these components below for notation and
completeness.

Feature Extraction algorithm. This algorithm transforms the
continuously evolving 390-dimensional time-series of Win-
dows system calls into a discrete-time sequence of feature-
vectors (FVs). This is accomplished by chunking the continu-
ous time series into r7—second intervals, and representing the
system call trace over each interval as a single L —dimensional
vector (Algorithm 1, lines 3—4). L is typically a low dimension,
in our experiments L = 10 and r = 1 second. This feature
extraction can be accomplished, for instance, by using a
histogram and PCA analysis (see Section VI-C for details).
Local Detector (LD) Algorithm. The LD algorithm (Algo-
rithm 1) leverages the current state-of-the-art techniques in
automated malware detection to generate a sequence of alerts
from the FV sequence. Specifically, using both its internal
state and the current FV, the LD algorithm generates an alert
if it thinks that this FV corresponds to malware, and produces
no alert if it thinks that the current FV is benign (lines 5-8).
Henceforth, we define an alert-FV to be an FV that generates
an LD alert (either true or false positive). In our experiments
each LD employs Random Forest as a binary classifier for
malware detection because Random Forest demonstrates the
best performance on the training data set (Figure 3).
Neighborhood Instances from Attack-Templates. Each
neighborhood time window (NTW), Shape GD generates
neighborhood instances (Algorithm 2) based on statically
defined attack vectors — each attack vector is a “Template”
to generate neighborhoods with. Algorithm 2 shows how the
concept of neighborhood unifies operationally distinct attacks
like waterhole and phishing.

The template for detecting a waterhole attack forms a
neighborhood out of client nodes that access a server or a
group of servers within a neighborhood time window (NTW).

Algorithm 2: Neighborhoods from Attack-Vectors

Input : Template-type, NTW
Output: Update the list of active neighborhoods

NB-LIST

[time, time+NTW] defines the current time window
1 time := current time

2 while True do

A U B W
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if Template-type = waterhole attack then

V := client machines*

S := accessed servers*

predicate(A:Client, B:Servers) := A accesses B

else if Template-type = phishing attack then

V := email recipient machines*

S := mailing lists*

predicate(A:Recipient, B:Mailing list) := A C B

partitioning a set into non-disjoint sets to incorporate
structural filtering

N
Py, P, ..., Py = partition-set(S), where S = |J P;
i=1
form neighborhoods N B; using partitions P;
NB; = {V | predicate(V, P;)}

set expiration time for a neighborhood N B;
N Bj.expiration-time = t+NTW

add all neighborhoods to the list NB-LIST
NB-LIST = {NB; | Vi in [1,N]}

advance time by NTW sec
time = time+NTW

*active within the time window [time, time+NTW]

Algorithm 3: Malware Detection in a Neighborhood

Input : L-dim projections of alert-FVs
Output: Malicious neighborhoods
NB-LIST - list of neighborhoods

for each NB in NB-LIST do

aggregate L-dim projections of alert-FVs on per
neighborhood basis

B := {alert-FVs | node id C NB}

build an (L, b)-dim. vector-histogram

‘Hp = bin & normalize 55 along each dimension
compute a neighborhood score — ShapeScore
ShapeScore := Wasserstein Dist.(Hzg, Hreference)

perform hypothesis testing
if ShapeScore > ~ then
| label NB as malicious




The other template, which is used for detection of a phishing
attack, includes in a neighborhood email recipient machines
belonging to a set of mailing lists. The two templates are
shown in lines 3-10.

For simplicity we present a batch version of the neighbor-
hood instantiation algorithm (Algorithm 2) which advances
time by NTW and creates new neighborhoods for each NTW
window. In contrast, the online Shape GD version updates
already existing neighborhoods while monitoring client—server
interactions in real-time — we demonstrate the online Shape
GD algorithm to detect waterhole attacks and the batch version
against phishing attacks in our evaluation.

The neighborhood instantiation algorithm accepts a template
type as input, i.e. either a template for detecting a waterhole
attack or a phishing attack, and length of a neighborhood time
window (NTW). algorithm operates on time-window basis,
where each time window spans NTW seconds. The algorithm
starts by defining the sets V' and S that are later used to form
neighborhoods. For a waterhole attack, the set V' includes all
client machines accessing a set of servers and S is a set of the
accessed servers. To instantiate neighborhoods for a phishing
attack, V' is a set of all email recipient machines and S is a
set of mailing lists. In both cases the algorithm considers only
the entities that are active within a current NTW window.

Each attack requires a predicate that determines relation
between the elements of the sets V' and S. For a waterhole
attack such a predicate is true if a client accesses one of
the servers (line 6). In the case of a phishing template, the
predicate is evaluated to true if a recipient belongs to a
particular mailing list (line 10).

The neighborhood instantiation algorithm proceeds with
partitioning the set S into one or more disjoint subsets F;
(line 11). This is to incorporate °‘structural filtering’ into
the algorithm, allowing an analyst to create neighborhoods
based on subsets of servers (instead of all servers in case of
waterhole) or divide all mailing lists into subsets of mailing
lists (in the phishing). Structural filtering boosts detection
under certain conditions (see Section VII-D).

The neighborhood instantiation algorithm builds a neigh-
borhood for each partition P; using a corresponding predicate
(line 12). After forming a neighborhood, the algorithm sets
its expiration time (line 13), which is the end of the current
NTW window. All the neighborhoods in the list NB-LIST
are discarded at the end of the current NTW window. Finally,
the algorithm adds the just formed neighborhoods to N B-
LIST (line 14) and advances time by one NTW (line 15).

The template-based neighborhood instantiation algorithm
(Algorithms 2) shares the NB-LIST data structure with
the Algorithm 3 that uses neighborhoods’ shapes to detect
malware.

Malware Detection in a Neighborhood. Algorithm 3) detects
malware per neighborhood instead of individual nodes. The
input to the algorithm is a set of alert-FVs from each neigh-
borhood and its output is a global alert for the neighborhood.
We now describe how the algorithm distinguishes between the

conditional distributions of alert-FVs from true-positive and
false positive neighborhoods.

The key algorithmic idea is to first extract neighborhood-

level features — i.e., to map all alert-FVs within a neighborhood
to a single vector-histogram which robustly captures the neigh-
borhood’s statistical properties. Then, Shape GD compares this
vector-histogram to a reference vector-histogram (built offline
during training) to yield the neighborhoods ShapeScore. The
reference vector-histogram is constructed from a set of false
positive alert-FVs thus, it captures the statistical shape of
misclassifications (FPs) by the LDs but at a neighborhood
scale. Finally, Shape GD trains a classifier to detect anomalous
ShapeScores as malware.
Generating histograms from alert-FVs. The algorithm ag-
gregates L-dimensional projections of alert-FVs on per neigh-
borhood basis into a set B (Algorithm 3, line 3). After
that, Shape GD converts low dimensional representation of
alert-FVs, the set B, into a single (L,b)-dimensional vector-
histogram denoted by Hp (line 4). The conversion is per-
formed by binning L-dimensional vectors within the B set
along each dimension. In each of the L-dimensions, the scalar-
histogram of the corresponding component of the vectors is
binned and normalized. Effectively, a vector-histogram is a
matrix Lxb, where L is the dimensionality of alert-FVs and b
is the number of bins per dimension.

We use standard methods to determine the size and number

of bins and note that the choice of Wasserstein distance in the
next step makes Shape GD robust against variations due to
binning. In particular, we tried square-root choice, Rice rule,
and Doanes formula [57] to estimate the number of bins, and
we found that 20-100 bins yielded separable histograms (as
in Figure 4) for the Windows dataset and fixed it at 50 for our
experiments.
ShapeScore. We get the ShapeScore by comparing this his-
togram, Hp, to a reference histogram, denoted by H,er. The
reference histogram is generated using only the false positive
FVs of the LDs. In other words, the local detectors are applied
to the traces generated by benign apps; the FVs corresponding
to the alerts from the LD (these are the false positives) are
used to construct the reference histogram H,.r. ShapeScore is
thus the distance of a neighborhood from a benign reference
histogram and a high score indicates potential malware.

The ShapeScore of the accumulated set for FVs, B, is given
by the sum of the coordinate-wise Wasserstein distances [41]
(Algorithm 3, line 5) between

Hp = (Hp(1) Hp(2) ... Hs(L))

and

Heet = (Href<1) Href<2) Href(L))'

In other words,

L
ShapeScore = Z dw (Hg(l), Hret (1)),
=1



where for two scalar distributions p, q, the Wasserstein dis-
tance [40], [41] is given by

dw (p,q) = Y |Y (0() — a(4))|-

i=1 |j=1

This Wasserstein distance serves as an efficiently
computable one dimensional projection, that gives us a
discriminatively powerful metric of distance [41], [42].
Because the Wasserstein distance computes a metric between
distributions — for us, histograms normalized to have total
area equal to 1 — it is invariant to the number of samples
that make up each histogram. Thus, unlike count-based
algorithms, it is robust to estimation errors in community size.
Figure 4 verifies this intuition, and shows that true positives
and false positive feature vectors separate well when viewed
through the ShapeScore.

Finally, to determine whether a neighborhood has malware
present we perform hypothesis testing. If ShapeScore is greater
than a threshold ~, we declare a global alert, i.e., the algorithm
predicts that there is malware in the neighborhood (lines
67). The robustness threshold v is computed via standard
confidence interval or cross-validation methods with multiple
sets of false-positive FVs (see Section VII-A).

V. DEPLOYMENT

Implementation. Shape GD is meant to serve as an addi-
tional enterprise-level network protection mechanism. Cur-
rently, enterprises use SIEM tools (like HP Arcsight and Blue
Coat) to monitor network traffic, tools that scan emails for
malicious links and attachments, in addition to host-based
malware detectors (LDs) from McAfee, Lookout, etc. We use
exactly these side-information from network logs (client-IP,
server IP, timestamp) and email monitoring tools to construct
neighborhoods and filter alert-FVs from LDs (Algorithm 2).
Upon receiving alert-FVs, Shape GD runs its malware
detection algorithm (Algorithm 3) for all neighborhoods the
alert-FVs belong to. If a particular neighborhood is suspi-
cious, then Shape GD will notify a higher level protection
system and forward any relevant information as an incident
report. This higher level protection system may include deeper
static/dynamic analysis and/or involve human analysts.
Computing Shape GD’s parameters. Here we elaborate on
the steps that should be taken in a real world environment to
choose parameters. The steps discussed here are generic and
are applicable to other attacks beyond waterhole and phishing
— the following results section quantifies each of these steps.
First, an analyst should start with designing an appropriate
algorithm to run on local detectors (LDs) (Section VI-C). To
achieve this, an analyst needs to compare the performance of
multiple feature extraction (FE) algorithms combined with a
diverse set of machine learning classifiers. One way to choose
the best pair of a FE algorithm and a classifier is to build ROC
curves for each pair, and select the pair that meets the desired
detection rate to computation/training effort for the LD.

Second, the analyst needs to determine whether even a
purely malicious neighborhood can be separated from benign
ones, and the minimum number of FVs per neighborhood to
do so (Sections VII-A and VII-B). This number depends on
the false positive rate of LDs ( e.g., in our experiments, we
determined that a neighborhood should generate at least 15K
FVs, see Figure 5).

Third, we need to choose an NTW based on the false posi-
tive rate (FP) and the desired time-to-detection (Section VII-C.
A small NTW means more frequent transfers of FVs from
LD to GD, whereas a long NTW means that more nodes can
get compromised before the GD makes a decision and/or FPs
can drown out TPs. Similarly, structural filtering can improve
detection rate if the true positive alert-FVs are not deluged by
the rate of false-positive alert-FVs — Section VII-D quantifies
how this trade-off differs for waterhole and phishing.
Reference histogram. As explained in the Section IV, a
reference histogram lies at the heart of Shape GD. To construct
it, we need to obtain the LD’s false positive vectors (FPs). A
straightforward approach is to collect FPs in a lab environment
using test inputs on benign apps in a malware-free system.

VI. EXPERIMENTAL SETUP
A. Benign and Malware Applications

We collect data from thousands of benign applications and
malware samples. To avoid tracing program executions where
malware may not have executed any stage of its exploit or
payload correctly, we set a threshold of 100 system calls per
execution. In our experiments we were able to successfully
run 1,889 out of 2,000 benign applications, 1,311 out of 2,000
malware samples from 193 malware families collected in July
2013 [58], and 2,364 out of 3,225 more recent samples from
13 popular malware families collected in 2015 [59].

We record time stamped sequences of executed system
calls using Intel’s Pin dynamic binary instrumentation tool.
Each Amazon AWS virtual machine instance runs Windows
Server 2008 R2 Base on the default T2 micro instances with
1GB RAM, 1 vCPU, and 50GB local storage. The VMs are
populated with user data commonly found on a real host
including PDFs, Word documents, photos, Firefox browser
history, Thunderbird calendar entries and contacts, and social
network credentials. To avoid interference between malware
samples, we execute each sample in a fresh install of the
reference VM. As malware may try to propagate over the
local network, we set up a sub-net of VMs accessible from
the VM that runs the malware sample. We left open common
ports (HTTP, HTTPS, SMTP, DNS, Telnet, and IRC) used
by malware for communication with its command and control
servers (C&C). We run each benign and malware program 10
times for 5 minutes per run for a total of almost 53,000 hours
total compute time on Amazon AWS.

Overall, benignware and malware were active for 141,670
sec and 283,270 seconds respectively, executing an average
of 11,900 and 13,500 system calls per second respectively.
Using 1 second time window (Section IV) and sliding the
time windows by lms, we extract histograms of system calls



within each time window as the ML feature, and finally pick
1.5M benign and 1M malicious FVs from this dataset for the
experiments that follow.

B. Modeling Waterhole and Phishing Attacks

Waterhole attack. To model a waterhole attack, we use
Yahoo’s “G4: Network Flows Data” [60] dataset, which
contains communication data between end-users and Yahoo
servers. The 41.4 GB (in compressed form) of data were
collected on April 29-30, 2008. Each netflow record includes
a timestamp, source/destination IP address, source/destination
port, protocol, number of packets and the number of bytes
transferred from the source to the destination. Specifically, we
use 5 hours of network traffic (208 million records) captured
on April 29, 2008 between 8 am and 1 pm at the border routers
connecting Dallas Yahoo data center (DAX) to the Internet.
We simulate a network that includes the 50 most frequently
accessed DAX servers — these communicate with 3,181,127
client machines over 14,249,931 requests.

We assume that an attacker compromises one of the most
frequently accessed DAX server — 118.242.107.76, which
processes ~ 752,000 requests within 5-hour time window
(~ 43.7 requests per second). In our simulation it gets
compromised at random instant between 8am and 10.30am.
Hence, Shape GD can use the remaining 2.5 hours to detect
the attack (our results show that less than a hundred seconds
suffice). Following infection, we simulate this ‘waterhole’
server compromising client machines over time with an in-
fection probability parameter — this helps us determine the
time to detection at different rates of infection. The benign
and compromised machines then select corresponding type of
FVs (generated in Section VI-A) and input these to their LDs.
Phishing attack. We simulate a phishing attack in a medium
size corporate network of 1086 nodes that exchange emails
with others in the network. To model email communication,
we pick 50 email threads with 100 recipients each from the
publicly available Enron email dataset [61] (the union of all
email threads’ recipients is 1086).

We start the simulation with these 50 emails being sent
into the 1086-node neighborhood, and seed only one email
out of 50 as malicious. We then model the infection speading
at different rates as this malicious email is opened by its (up
to 100) recipients at some time into the simulation and is
compromised with some likelihood when the user ‘clicks’ on
the URL in the email. Our goal is to measure the number of
compromised nodes before Shape GD declares an infection
in this neighborhood. All nodes that open and ‘click’ the
link in the malicious email will select malware FVs from
Section VI-A as input to their corresponding LDs, while the
remaining nodes select benign FVs.

To simulate the infection spreading over the email network,
we need to (a) model when a recipient ‘opens’ the email: we
do so using a long tail distribution of reply times where the
median open time is 47 minutes, 90-percentile is one day, and
the most likely open time is 2 minutes [62]; and (b) model the
‘click’ rate (probability that a recipient clicks on a URL): we
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Fig. 3. (ROC curves) True positive v. False positive curves shows detection
accuracy of seven local detectors. Random Forest outperforms all others; but
has unacceptably high false positive rate (above 10%) if one wants to achieve
at least 95% true positive rate.

vary it from 0% up to 100% to control the rate of infection.
For example, within 1-, 2-, 3-hour long time interval only
55%, 65%, and 70% of recipients of a malicious email open
it, which corresponds to 55, 65, and 75 infected machines
respectively at 100% click rate.

Overall, these two scenarios differ in their time-scales
(seconds v. hours) and in the relative rate at which benign
and malicious neighborhoods grow. As we will see, these
parameters have a significant impact on the composition of
neighborhoods and the Shape GD’s detection rate.
Methodology. We report averaged results from repeating
each experiment multiple times with random initialization
parameters. In particular, we use 10-fold cross validation
for machine learning experiments (Figure 3), 500 randomly
sampled benign/malicious neighborhoods with 10 repetitions
to compute average (Figures 4, 5), 100 repetitions of each
malware infection experiment (Figures 6,7,12,13), and 100
repetitions of infection with 10 repetitions per data-point
(Figures 8,9,10,11). All Shape GD’s parameters are chosen
based on a training data set (used for Figures 4 and 5) — we
then evaluate Shape GD (in the remaining figures) using a
completely separate testing data set.

C. Local Detectors

Our first step is to establish a good local detector (LD)
for desktop systems running Windows OS. In particular, we
choose system call based LDs since the system call interface
has visibility into an app’s intercation with core OS compo-
nents — file system, Windows registry, network — and can thus
capture signals relevant to malware executions.

We experiment with an extensive set of system-call LDs
— our takeaway is that even the best LD we could construct
operates at a true- and false-positive ratio of 92.4%:6% and is
not deployable by itself (i.e., will create ~30 false positives
every 10 minutes without a GD).

Each LD comprises of a feature extraction (FE) algorithm
and a machine learning (ML) classifier. Our FE algorithm
partitions the time-series of system calls into 1-sec chunks
and represents each chunk as a histogram (where each bin



contains frequency of a particular system call). Then it projects
all feature vectors onto 10-dimensional subspace spanned by
top 10 principal components generated by PCA algorithm. We
choose ML classifiers (used throughout prior work because
these are computationally efficient to train) such as SVMs,
random forest, k-Nearest Neighbors, etc, and do not include
complex alternatives such as artificial neural networks or deep
learning algorithms. We also deliberately avoid handcrafted
ML algorithms and hardcoded detection rules.

Figure 3 plots the true positive v. false positive rates (i.e.
the ROC curves) of the seven ML algorithms we evaluate. The
area under the ROC curve (AUC) is a quantitative measure
of LD’s performance: the larger the AUC, the more accurate
the detector. We specifically experiment with seven state-of-
the-art ML algorithms: random forest, 2-class SVM, kNN,
decision trees, naive Bayes, and their ensemble versions —
boosted decision trees with AdaBoost algorithm and Random
SubSpace ensemble of kNN classifiers (Figure 3). We also
evaluated 1-class SVM as an anomaly detector — however,
it yielded an extremely high FP rate and we exclude it from
further discussion. Overall, the random forest classifier worked
best — it has the highest AUC and we pick an operating point
of 92.4% true positives at a false positive rate of 6%.

VII. RESULTS

In this section, we quantify Shape GD’s early and robust
detection of infection as well as the baseline Count GD’s
fragility to small errors in estimating neighborhood size. In
particular, we find that the shape of a neighborhood — i.e. the
distribution of alert-FVs — can identify malicious neighbor-
hoods with less than 1% false positive and 100% true positive
rate using only 15,000 FVs' We then simulate realistic attack
scenarios and find that Shape GD can detect malware when
only 5 of 1086 nodes are infected through phishing in an
enterprise email network, and when only 108 of 550K possible
nodes are infected through a waterhole attack using a popular
web-service.

A. Can shape of alert-FVs identify malicious neighborhoods?

We first show that the shape of a neighborhood can easily
distinguish between neighborhoods that are either 100% be-
nign or 100% malicious. In real systems under, for example,
phishing or waterhole attacks, the Shape GD has to operate
under harsher conditions — detecting malware infections over
neighborhoods with a small fraction of infected nodes — and
we quantify Shape GD’s time to detection in subsequent
sections.

Figure 4 shows that Shape GD can indeed, given a suffi-
cient number of FVs, separate purely benign neighborhoods
from purely malicious ones. To conduct this experiment, we
construct benign and malicious neighborhoods by sampling
FVs uniformly at random from the set of all benign and
malicious FVs respectively. For this experiment, we set each

IRecall that at 60 FVs/node/minute, it takes 1000 nodes only 15 seconds
to create 15,000 FVs. For LDs with ~6% false positive rate, this corresponds
to 900 alert-FVs.
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neighborhood to be 15,000 FVs — in the next experiment, we
will justify this size and evaluate the Shape GD’s sensitivity
to neighborhood size.

We then process each FV through an LD — the Random
Forest LD trained on both benign and malicious system call
histograms — to obtain a set of ‘alerts’. An alert is either a
false positive (FP) or a true positive (TP). The Shape GD
receives the set of alert-FVs (an FV that led to an LD alert) per
neighborhood and computes the ShapeScore (see Section IV).
Recall that a small ShapeScore indicates the neighborhood’s
statistical shape is similar to that of a benign one.

In Figure 4, we compute the ShapeScore with 15,000 FVs
(filtered through an LD with about 6% FP rate and 92.4% TP
rate), and repeat this experiment 500 times for both benign and
malicious FVs. The histograms of the results are plotted, where
each point in the blue (or red) histogram represents a benign
(or malicious) ShapeScore. The non-overlapping distributions
separated by a large gap indicate that the shape of purely
benign neighborhoods is very different from the shape of
purely malicious neighborhoods.

The Shape GD detects anomalous neighborhoods by setting
a threshold score based on the distribution of benign neighbor-
hoods’ scores (Figure 4) — if an incoming neighborhood has a
score above the threshold, Shape GD labels it as ‘malicious’,



otherwise ‘benign’. We set the threshold score at 99-percentile
(i.e. our expected global false positive rate is 1%) and the
true positive rate is effectively 100% for this experiment. This
shows that for homogeneous neighborhoods over 15K FVs,
Shape GD can make robust predictions.

B. How many FVs does Shape GD need to make robust
predictions?

Neighborhood size is a crucial parameter for a Shape GD.
With too few FVs, benign neighborhoods shape will have high
variance (i.e. benign distribution in Figure 4 becomes wide and
the gap between two distributions shrinks), leading to false
negatives and positives. On the other hand, if neighborhoods
are large, their shapes will be dominated by the large number
of benign FVs and thus lead to missed alerts (false negatives)
especially in the early stages of infection. Further, the number
of alert-FVs per neighborhood in a deployed Shape GD need
to be comparable to (or larger than) those used in training —
with these constraints, we want to find the smallest number of
FVs Shape GD needs to make robust predictions.

Figure 5 shows the sensitivity of Shape GD to neighborhood
size (i.e., the number of FVs in a neighborhood during training
stage). We vary the size of neighborhoods used in training
from 3,000 up to 30,000 FVs and average the result of 10
experiments. We present two metrics in Figure 5 — the red
curve plots the inter-class distance (between histograms of
benign and malicious neighborhoods from Figure 4), and the
blue curve plots intra-class distance (i.e. the width of the
benign histogram). Figure 5 shows that the red inter-class
distance increases (and blue intra-class variance decreases)
quickly as neighborhood size increases, and both curves flatten
out once the neighborhoods are larger than 15,000 FVs.

This shows that (for our Windows programs dataset) neigh-
borhoods with 15,000 FVs or more are a good choice to train
Shape GD because purely malicious or benign distributions
stabilize at this size. In real scenarios with mixtures of mostly
benign and a few malicious neighborhoods, the number of
FVs will have to be scaled up depending upon the timescale
of attacks (hours for phishing v. seconds for waterhole) and
the number of nodes affected by an attack (100s or 1000s
in enterprise networks v. 100s of thousands in a broader
waterhole attack). In the phishing and waterhole attack case
studies that follow, we use neighborhoods of 100K FVs and
15K FVs respectively.

C. How early can Shape GD detect malware infections using
temporal neighborhoods?

Temporal filtering creates a neighborhood using only the
nodes that are active within a neighborhood time window
(NTW). For example, a temporal neighborhood for the phish-
ing scenario would include every email address that received
an email within the last hour (1086 nodes in our experiments).
Similarly, a waterhole attack scenario would include all client
devices that accessed any server within the last NTW into one
neighborhood (~ 17,000 nodes on average in 30 seconds).
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the portion of infected nodes in a neighborhood increases over time reaching
1248 nodes on average, ShapeScore goes up showing that Shape GD becomes
more confident in labeling neighborhoods as ‘malicious’. It starts detecting
malware with at most 1% false positive rate when roughly 200 nodes get
compromised. The neighborhood includes 17178 nodes on average and spans
over 30 sec time interval.

This neighborhood filtering models a CIDS designed to de-
tect malware whose infection exhibits temporal locality (and
obviously does not detect attacks that target a few high-value
nodes through temporally uncorrelated vectors).

Phishing and waterhole attacks operate at different time
scales (and hence NTWs). Due to the long tail distribution of
email ‘open’ times, the phishing NTW varies from 1-3 hours
in our experiments. On the other hand, a popular waterhole
server quickly infects a large number of clients within a short
period of time — thus, we vary the waterhole NTW from 4
seconds up to 100 seconds.

Shape GD’s time to detection for one NTW. We fix NTWs
(1 hour for phishing and 30 seconds for waterhole) and vary a
parameter that represents a node’s likelihood of infection from
0% up to 100% — modeling whether a phished user clicks the
malicious URL (phishing) or a drive-by exploit succeeeds in



a waterhole attacks.

Figures 6 and 7 plot the neighborhood score v. the average
number of infected nodes within benign (blue curve) and
malicious (red curve) neighborhoods — the two extreme points
on the X-axis corresponds to either none of the machines
being infected (the left side of a figure) or the maximum
possible number of machines being infected (the right side
of the figure). In this experiment, phishing can infect up to
55 machines in the 1 hour NTW, while the waterhole server
can infect almost 1250 nodes in the 30 seconds NTW. Every
point on a line is the median neighborhood score from 10
experiments with whiskers set at 1%- and 99%- percentile
scores.

When increasing the number of infected nodes in a neigh-

borhood, as expected, the red curve larger deviates from
the blue one. Therefore, Shape GD becomes more confident
with labeling incoming partially infected neighborhoods as
malicious. Shape GD starts reliably detecting malware very
quickly — when only 22 nodes (phishing) and 200 nodes
(waterhole) have been infected. We also experimented with
other sizes of neighborhood window — the plots we obtained
showed similar trends.
Shape GD’s sensitivity to NTW. We show that the size of a
neighborhood is important for early detection — the minimum
number of nodes that are infected before Shape GD raises
an alert — in Figures 8 and 9. Varying the NTW essentially
competes the rates at which both malicious and benign FVs
accumulate — interestingly, we find that these relative rates
are different for phishing and waterhole attacks and lead to
different trends for detection performance v. NTW.

We vary the NTW from 1 hour to 3 hours for phishing and
from 4 sec to 100 sec for waterhole and record the number of
infected nodes when Shape GD can make robust predictions
(i.e. less than 1% FP for almost 100% TP).

Increasing the NTW in the phishing experiment from 1 to
3 hours improves the Shape GD’s detection performance — at
17.08 infected nodes for a 3 hour NTW compared to 20.24
nodes for a 1 hour NTW. Detection improves slowly because
while the infection rate slows down over time as fewer emails
remain to be opened, the long tail distribution of email ‘open’
times causes most of the 17 victims to fall early in the NTW
and accumulate sufficient malicious FVs to tip the overall
neighborhood’s shape into malicious category.

In a waterhole scenario, the number of client devices active
within a time window (and hence the false positive alert-FVs
from the neighborhood) grows much faster than the malware
can spread (even if we assume that every client that visits the
waterhole server gets infected. Here, a large NTW aggregates
many more benign (false positive) FVs from clients accessing
non-compromised servers. Hence, in contrast to the phishing
attack, increasing the NTW degrades time to detection. Shape
GD works best with an NTW of 6 seconds — only 107.5 nodes
on average become infected out of a possible ~550,000 nodes.
Note that a very small NTW (below 6 seconds) either does not
accumulate enough FVs for analysis — if so, Shape GD outputs
no results — or creates large variance in the shape of benign
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deteriorates linearly when increasing the size of a neighborhood window from
6 sec to 100 sec.

neighborhoods and abruptly degrades detection performance.

Note that a Shape GD requires a minimum number of FVs
per neighborhood to make robust predictions — at least 15,000
FVs based on Section VII-B — hence, the Shape GD has to
set NTWs based on the rate of incoming requests and access
frequency of a particular server. For example, if a server is
not very popular and is likely to be compromised, the Shape
GD could increase this server’s NTW to collect more FVs for
its neighborhood.

D. Can neighborhood structural information improve Shape
GD’s time to detection?

Both phishing and waterhole attacks impose a logical
structure on nodes (beyond their time of infection): phish-
ing spreads malware through malicious email attachments
or links while waterhole attacks infect only the clients that
access a compromised server. This structure suggests that
temporal neighborhoods can be further refined based on the
sender/recipient-list of an email (e.g., grouping members of a
mailing list into a neighborhood in the phishing scenario) or
based on the specific server accessed by a client (i.e., grouping
clients that visit a server into one neighborhood).

To analyze the effect of such structural filtering on GD’s
performance, we vary filtering from coarse- (no structural
filtering, only time-based filtering) to fine-grained (aggregating
alerts across each recipients’ list separately or across clients
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Fig. 10. (Phishing attack) Comparing to pure time-based NF, structural

filtering algorithm improves Shape GD’s performance by ~ 4X by taking
into consideration logical structure of electronic communication (sender —
receiver relation).

accessing each server separately) (Figures 10, 11). Specifically,
the aggregation parameter changes from 50 recipients’ lists or
servers down to 1. As before, we measure detection in terms
of the minimum number of infected nodes that lead to raising
a global alert. Also we consider three NTW values — 1-, 2-,
and 3- hours long for phishing and 25-, 50-, and 100-sec long
for waterhole.

Figure 10 shows that structural filtering improves detection
of a phishing attack by ~ 4z (difference between left and right
end points of each curve) over temporal filtering — by filtering
out alert-FVs from unrelated benign nodes that were active
during the same NTW as infected nodes. Interestingly, the
size of a neighborhood window does not considerably affect
the detection when used along with the most fine-grained
structural filtering (treating each recipients’ list individually)
— 3-hour long NTWs results in only a ~ 12% decrease in the
number of compromised nodes (i.e. time to detection). This
shows that there is substantial signal that structural filtering
can help extract from alert-FVs in smaller NTWs (and thus
improve Shape GD’s time to detection).

Structural filtering improves time to detect waterhole attacks
as well — by 5.82x, 4.07x, and 3.75x for 25-, 50-, 100-sec long
windows respectively. Interestingly, structural filtering requires
Shape GD to use longer NTWs than before — small NTWs
(such as 6 seconds from the last sub-section) no longer supply
a sufficient number of alert-FVs for Shape GD to operate
robustly. Even though structural filtering with a 25 second
NTW improves detection by 5.82x over temporal filtering with
25 second NTWs, the number of infected nodes at detection
time is 139.9 — higher than the 107 infected nodes for temporal
filtering with a 6 second NTW (Figure 9). Temporal and
structural filtering thus present different trade-offs between
detection time and work performed by GD - their relative
performance is affected by the rate at which true and false
positive FVs are generated.
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Fig. 11. (Waterhole attack) Comparing to pure time-based NF, structural
filtering algorithm improves Shape GD’s performance by 3.75x — 5.8x by
aggregating alerts on a server basis.

E. How fragile is state-of-the-art Count GD to errors in
estimating neighborhood size?

A Count GD algorithm counts the number of alerts over a
neighborhood and compares to a threshold to detect malware.
As discussed earlier, this threshold should scale linearly in
the size of the neighborhood, i.e. the total number of FVs
generated within a neighborhood. Thus it is crucial for Count
GD to be able to estimate neighborhood size precisely.

We now experimentally quantify the error Count GD can
tolerate in phishing (Figure 12) and waterhole (Figure 13)
settings. Note that the error in estimating neighborhood size
can be double sided — underestimates (negative error) can
make neighborhoods look like alert hotspots and lead to false
positives, while overestimates (positive error) can lead to
missed detections (i.e., lower true positives).

We run Count GD in the same setting as Shape GD
when evaluating time-based NF (Section VII-C) — 1-hour
long neighborhood time window (NTW) with 1086 nodes
(Figure 12) to model phishing and 30-sec long neighborhood
including 17,178 nodes (Figure 13) to model a waterhole
attack. We vary click rate in emails (phishing) and infection
probability (waterhole) such that the number of infected nodes
in a neighborhood changes from 0 to 55 (phishing) and from
0 to 500 (waterhole) in four increments — note that in both
scenarios, only a small fraction (5.5% and 2.9%) of nodes per
neighborhood get infected in the worst case.

In this setting, recall that the Shape GD has a maximum
global false positive rate of 1% and a true positive rate of
100% — and detects malware when only 22 (phishing) and 200
(waterhole) nodes are infected — for the same NTWs. When the
same number of nodes are infected, and for a similar detection
performance, our experiments show that the Count GD can
only tolerate neighborhood size estimation errors within a very
narrow range — [-2%, 6.3%] (phishing) and [-0.1%, 13.8%]
(waterhole). A key takeaway here is that underestimating a
neighborhood’s size makes Count GD extremely fragile (-2%
in phishing and -0.1% for waterhole). On the other hand,
overestimating neighborhood sizes decreases true positives,
and this effect is catastrophic by the time the size estimates
err by 17% (phishing) and 17.5% (waterhole).
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Fig. 13. (Waterhole attack) An error in estimating neighborhood size

dramatically affects Count GD’s performance. It can tolerate at most 0.1%
underestimation errors and 13.8% overestimation errors to achieve comparable
with Shape GD performance.

We comment that this effect can be important in practice.
Given the practical deployments where nodes get infected
out of band (e.g., outside the corporate network), go out
of range (with mobile devices), or with dynamically defined
neighborhoods based on actions that can be missed (e.g.
neighborhood defined by nodes that ‘open’ an email instead of
only downloading it from a mail server), the tight margins on
errors can render Count GD extremely unreliable. Even with
sophisticated size estimation algorithms, recall that the under-
lying distributions that create these neighborhoods (email open
times, number of clients per server, etc) have sub-exponential
heavy tails [62] — such distributions typically result in poor
parameter estimates due to lack of higher moments, and thus,
poorer statistical concentrations of estimates about the true
value [63]. Circling back, we see that by eliminating this size
dependence compared to Count GD, our Shape GD provides
a robust inference algorithm.

F. How accurate is clustering for global malware detection?

While Count GD is fragile, clustering GDs are inaccurate
in the early stages of infection. This is why prior work [27]
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Fig. 14. (ROC curve) True positive v. False positive curve shows detection
accuracy of the clustering-based malware detector [27]. Its Area Under the
Curve (AUC) parameter averaged for 10 runs reaches only 48.3% and 47.4%
in the case of waterhole and phishing attacks respectively; such low AUC
value makes it unusable as a global detector.

uses clustering to (offline) identify high-priority incidents from
security logs for human analysis (instead of as an always-on
GD) — this use case is complementary to an always-on global
detector. We quantify a recent clustering GD’s [27] detection
rate on our data set.

First, we reduce dimensionality of 390-dimensional FVs by
projecting them on the top 10 PCA components, which retain
95.72% of the data variance. Second, we use an adaptation
of the K-means clustering algorithm that does not require
specifying the number of clusters in advance [26], [27], [64].
Specifically, the algorithm consists of the following three
steps: (1) select a vector at random as the first centroid and
assign all vectors to this cluster; (2) find a vector furthest away
from its centroid (following Beehive [27], we use L1 distance)
and make it a center of a new cluster, and reassign every vector
to the cluster with the closest centroid; and (3) repeat step 2
until no vector is further away from its centroid than half of
the average inter-cluster distance.

The evaluation settings of the clustering algorithm match
exactly the settings where Shape GD detects infected neigh-
borhoods with 99% confidence. Specifically, the algorithm
clusters the data that we collected in a 17,178-node neigh-
borhood under a waterhole attack within 30 seconds and the
data that we collected over an hour-long session across 1086
nodes in a medium size corporate network under a phishing
attack (Section VI-B). As we have already demonstrated
(Section VII-C), Shape GD starts detecting malware when
107 (waterhole attack) and 22 (phishing attack) nodes get
compromised (as in experiments for Figures 6 and 7).

Clustering does not fare well, and results look very similar
for both waterhole and phishing experiments. The clustering
algorithm partitions waterhole data set into 30 clusters. We
observe three large clusters that aggregate most of the benign
FVs. However, the algorithm fails to find small ’outlying’
clusters consisting of predominantly malicious data. As for
the phishing experiment, we observe a similar picture: the
algorithm forms slightly higher number of clusters — 33 rather
than 30 — and it identifies 4 densely populated clusters. In both
cases each cluster heavily mixes benign and malicious data,



hence the clustering approach suffers from poor discriminative
ability, i.e. it is unable to separate malicious and benign
samples.

Note the clustering algorithm enforces explicit ordering
across the clusters. That is, the algorithm forms a new cluster
around an FV that is furthest away from its cluster centroid.
Thus, earlier a cluster is created, the more suspicious it is.
By design of the clustering algorithm, the clusters are subject
to a deeper analysis in order of their suspiciousness. Such an
inherent ordering allows us to build a receiver operating curve
(Figure 14) and compute a typical metric for a binary classifier
— Area Under the Curve (AUC) by averaging across 10 runs.
The AUC reaches only 48.3% and 47.4% for waterhole and
phishing experiments respectively.

This experiment illustrates the failure of the traditional
recipe of dimensionality reduction plus clustering. There is
a fundamental reason for this — the neighborhoods we seek
to detect are small compared to the total number of nodes in
the system. Optimization-based algorithms that exploit density,
including K-Means and related algorithms, fail to detect small
clusters in high dimensions, even under dimensionality reduc-
tion. The reason is that the dimensionality reduction is either
explicitly random (e.g., as in Johnson-Lindenstrauss type ap-
proaches), or, if data-dependent (like PCA), it is effectively
independent of small clusters, as these represent very little of
the energy (the variance) of the overall data. Spectral clustering
style algorithms [65]-[67] are also notoriously unable to deal
with highly unbalanced sized clusters, and in particular, are
unable to find small clusters.

Shape GD also reduces dimensionality but does so after
neighborhood filtering. This amplifies the impact of small
neighborhoods. The combination of dimensionality reduction,
small-neighborhood-amplification, and then aggregation rep-
resents a novel approach to this detection problem, and our
experiments validate this intuition.

VIII. DISCUSSION

Global FPs vs LD FPs. As remarked in the Introduction,
an FP of 1% at the global level means that we will see
one alert every 100 - 300 hours (for the phishing scenario)
and 100 seconds (for waterhole scenario the neighborhood
time window slides by 1 second). This reduces work to be
performed by the deeper, second-level analysis considerably.

Specifically, LDs operating at 6% false positive rate generate
23.5M - 70M FPs within 100-300 hours time interval in a
network of 1086 nodes (phishing) and 300K alerts within
every 100 sec interval where neighborhoods include ~50K
nodes on average (waterhole). Shape GD filters these alerts.
When using 1-3 hours (phishing) and 6 sec (waterhole)
time-based neighborhood filtering, Shape GD will report to
a system running a deeper analysis approximately 234.5K
— 703.7K FPs raised by LDs (phishing) and approximately
1.4K FPs (waterhole). Adding structural filtering brings these
numbers down to 21.6K — 64.8K FPs (phishing) and 360 FPs
(waterhole).
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Compared to a neighborhood of LDs, Shape GD thus
reduces the number of FPs reported to deeper analyses by
~100x and ~200x when employing time-based filtering only
(for phishing and waterhole scenarios respectively), while
structural filtering reduces alert-FVs for deeper analysis to
~1000x and ~830x. In both scenarios, analysts can choose
to reduce number of alert-FVs to be analyzed by sliding
neighborhood windows by a larger interval; however, this will
increase the time to detect malware infection.

Performance Overheads. Recall that Shape GD requires only
alert FVs — this leads to a two-fold dimensionality reduction
when sending data from individual LDs to the GD. First,
the FVs are low-dimensional (here, 10-dimensional vectors).
Second, only alert FVs are needed — this leads to a 16-fold
reduction in data (roughly only 6% of the FVs lead to alerts).
Further, the Shape GD is a batch processing algorithm, thus,
the individual nodes can batch their data at coarse time-scales
(e.g. once every NTW) and send the data to the Shape GD.
Finally, it does not matter even if some batches are lost/missed;
recall that the Shape GD is robust to precisely this type of
noise. Appendix A discusses overheads in more depth but
the key takeaway is that Shape GD has low overheads —
each LD can use simple dot products and scalar comparisons
to implement PCA and Random Forests, the total incoming
bandwidth to the Shape GD server ranges from 40KBps to
174KBps for phishing and waterhole respectively, and the
server only needs to bin data (into 50 bins) and compute
Wasserstein distance (add 10 counters in each bin).

Applying Shape GD to real-world, heterogeneous enter-
prise datasets. Our current experiments rely on a homoge-
neous CIDS where each node runs the same LD. Our future
work includes deploying Shape GD in a heterogeneous system
with several LDs, each with its own set of features and
time-scales of analysis, that pool data into SIEM tools with
arbitrary delays — Appendix B describes our initial results in
this direction.

In summary, we apply Shape GD to 5.5 Billion security log
entries (from 20 LD types) in an enterprise with over 150K
devices. Starting with 700K unique domain names visited
by the enterprise devices, we first use SecureRank [68] and
VirusTotal [69] to rank the domains in order from benign
to potentially malicious. The key result is that even if we
start with the 100 most suspicious domains generated by
SecureRank and VirusTotal — that led to 30 unique security
incidents — Shape GD (set to 97 percentile  threshold) is
able to identify the top 25 domains as malicious before they
generate a confirmed signature-based LD alert (and thus pre-
empt 15 confirmed exploits). At 98 and 99 percentiles, Shape
GD can pre-empt 11 and 7 of the 30 exploits respectively —
flagging only 15 and 5 neighborhoods (domains) respectively
from the top 100 domains already filtered using SecureRank
and VirusTotal. This suggests that Shape GD can act as a
prioritization scheme when applied to a heterogeneous system
— a deeper study of this challenge forms part of our future
work.



IX. CONCLUSIONS

Building robust behavioral detectors is a long-standing prob-
lem. This paper identifies neighborhoods to capture transient
correlations created by attack vectors into an enterprise net-
work, and introduces the notion of statistical shape to robustly
identify malicious neighborhoods. Neighborhoods and their
shape thus serve as a new and effective lens for dimensionality
reduction and significantly improve false positive rates of
state-of-the-art behavioral analyses.
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APPENDIX

A. COMPUTATION AND COMMUNICATION COSTS OF
SHAPE GD

Local detectors. Generating a single FV, which is a 1-sec
histogram of system calls, on a local host is equivalent to per-

forming 2,500 (system call frequency) direct table lookups on
average and incrementing corresponding counters. Projection
on a PCA basis requires computing 10 dot products. Finally,
running an LD, which is Random Forest in our case, results in
performing 330 scalar comparisons on average. At 1 second
per FV, the overheads of such an LD are negligible.

Data transfer. Each FV is composed of 10 floating point
numbers (40 bytes total if assuming single precision format).
In the phishing experiment 1086 hosts transfer (in aggre-
gate) ~ 40K B/sec; data transfer rate in waterhole setting
is a little bit higher: ~ 4,450 hosts transfer (in aggregate)
~ 174K B/sec. In both cases we assume Shape GD using
pure time-based filtering with 1 hour and 6 sec neighborhood
time windows respectively.

If Shape GD employs structural filtering on top of the
time-based one, then data transfer depends on the number
of emails floating in a network or on the number of servers.
In both cases, data transfer scales linearly with the number
of emails and servers. When applying the most fine-grained
structural filtering in our experiments, the nodes susceptible
to phishing attacks transfer ~ 4K B/sec per email and the
nodes susceptible to waterhole attacks send ~ 40K B/sec per
server when using 1 hour and 25 sec neighborhood windows
respectively.

Server computations. After receiving a batch of alert-FVs,
Shape GD performs lightweight computations. Overhead of
binning scales linearly with the number of alert-FVs in a batch;
each binning operation is a direct table lookup together with
counter increment. Calculating ShapeScore, which is Wasser-
stein distance, results in a sequence of addition operations,
whose total number is equal to the dimensionality of FVs,
which is 10, multiplied by the number of bins, which is 50.
To summarize, Shape GD’s computational requirements are
fairly light-weight.

B. SHAPE GD ON AN ENTERPRISE DATASET

We applied Shape GD to one month (February 2016) of
security logs in a Fortune 500 enterprise. This dataset is
extremely noisy and heterogeneous — unlike our homogeneous
dataset in the paper which models deployments like osquery
in Facebook. In contrast, this dataset includes an average of
almost 250 Million security-related log entries per day from
almost 20 different local detectors (Blue Coat, Symantec,
McAfee, F5, Cisco, etc), generated from a system with over
150K devices (including personal computers, mobile devices,
servers, firewalls, routers, and other network elements), all
recorded in a ‘market leading’ SIEM tool for global malware
analysis. Devices come and go, log entries can be delayed by
up to two months, and logs with confirmed signature-based
malware infections are very rare (0.29%). Hence, ground truth
infection data is hard to get. The goal here is to filter the 5.5
Billion log entries including 700,000 different server IPs in
February 2016 to a few tens of incidents that can be manually
analyzed.

First, the data is high-dimensional and sparse. Each log
entry contains 468 categories filled out with mostly categorical



values, and most rows have no content or are filled out with
uninformative default values. Directly using one-hot encoding
to represent categorical data produces a 330,000-dimensional
vector, hence we use the top 20 security-critical dimensions
and encode data manually before applying one-hot encoding to
yield 364 dimensional vectors. Determining unique identities
for devices and identifying usernames and domain-names
associated with IP addresses in rows takes several analysis
passes over the sparse dataset.

We form neighborhoods based on the accessed domains,
thus a neighborhood includes devices accessing different
URLs hosted in the same domain. This yields 400,000
unique neighborhoods. We apply two heuristics to rank those
neighborhoods in terms of their maliciousness. First, we run
SecureRank algorithm, which is an adaptation of PageRank
algorithm for the problem of ranking domains in terms of
their potential maliciousness. We initialize the SecureRank al-
gorithm by labeling domains belonging to certain Blue Coat’s
categories (e.g. Suspicious, Spam, Scam/Questionable/Illegal,
etc) as malicious. SecureRank outputs a sorted list of domain
names based on their malicious score.

Our second heuristic is to query VirusTotal scanner to obtain

information about security incidents related to a particular
domain. VirusTotal’s reports include the number of malicious
URLs, the number of malware samples communicating to a
particular domain, the number of samples embedding URL
strings leading to the domain under investigation. If Virus-
Total does not have information about incidents related to a
particular domain, then we discard the domain from the list
of suspicious domains (i.e., the candidates for neighborhood
formation process).
Training Shape GD. To build a reference histogram, we
select the top 20 benign domains given by Secure Rank
(and confirmed using VirusTotal), aggregate all 31 Million
log records related to communication with those domains,
and learn a reference vector-histogram. The next step in the
training process is to determine threshold -, which depends
on the distribution of benign neighborhood scores. For this
reason, we select the top 100 benign domains from our domain
list (not including the previously used 20 domains), build
neighborhoods for each domain, randomly select 1,000 records
from each neighborhood, and compute ShapeScore. We select
a thousand records because we want our Shape GD to operate
on domains that have more than a thousand records. Thus,
if during testing a domain’s neighborhood yields less than a
thousand records, we have to discard it.

v, percentile | Flagged nbds | Prevented incidents
97 25 15

98 15 11

99 5 7

TABLE I
SHAPE GD PRIORITIZING A TOTAL OF 100 CANDIDATE NEIGHBORHOODS
AND 30 CONFIRMED EXPLOITS.

Testing Shape GD. We select the top 100 suspicious domains
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according to SecureRank followed by VirusTotal, form a
neighborhood of end hosts using each of these 100 domains,
select the first 1000 records in chronological order, and run
Shape GD.

We experimented with three values of the threshold v —
97th, 98th, 99th percentiles (Table A). For each threshold
we computed the number of security incidents that could
have been prevented during February once Shape GD declares
the domain (i.e. its neighborhood) as infected. These thresh-
olds result in labeling 25, 15, and 5 domains/neighborhoods
(respectively) as infected, and yet pre-empt 15, 11, and 7
(respectively) of the 30 exploits. Increasing ~ from 97th
percentile to 99th percentile enables an analyst to trade off
the number of domains that need to be manually analyzed
with the number of exploits that were pre-empted.

C. PREVIOUS SUBMISSIONS

Conference | Score 1 Score 2 Score 3
CCS’16 5 (accept) 3 (weak reject) 3 (weak reject)
NDSS’16 3 (weak accept) | 3 (weak accept) | 2 (weak reject)

TABLE II
THE PAPER WAS SUBMITTED TO CCS’16 AND NDSS’16.

CCS’16. The key complaint was that the paper needed to
formally describe the Shape GD algorithm, and to explain how
neighborhoods can be defined by an analyst. Improvements:
1y
2)

Added formal description of Shape GD’s algorithm.
Clarified how neighborhoods can be defined based on
attack vectors. (More generally, based on either infor-
mation flow sources or sinks of an enterprise system.)
Added a deployment section and tied it closely with
questions answered in the evaluation.

4) Added overhead section.
NDSS’16. The key complaint was to differentiate Shape GD
from clustering GDs instead of only (ensemble etc) based
Count GDs. Improvements:

3)

1) Quantified the best known clustering algorithm’s per-
formance on our dataset and explained why clustering
and similar methods are fundamentally limited against
high-dimensional data. Neighborhoods overcome these
limitations — since they capture transient correlations that
impose a low-dimensional structure on the raw data.
Updated theoretical description of the algorithm.
Implemented Shape GD within a real-world SIEM in-
frastructure (at a Fortune-500 company) (see Appendix
B). We identified a set of new challenges: extremely
high-dimensional and sparse data, delayed records,
uniquely identifying devices and users from log records
— addressing all these challenges is in our roadmap
and deserves an entire paper. This paper focuses on
a homogeneous GD as deployed by users of (e.g.)
osquery and studied in a large majority of prior work
(E.g., we replicate the malware and benignware datasets
from BareCloud in Usenix 2014 and use real datacenter
traces from Yahoo).

2)
3)



