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Abstract

Trusted execution environments (TEEs) for machine learn-
ing accelerators are indispensable in secure and efficient
ML inference. Optimizing workloads through state-space ex-
ploration for the accelerator architectures improves perfor-
mance and energy consumption. However, such explorations
are expensive and slow due to the large search space. Current
research has to use fast analytical models that forego critical
hardware details and cross-layer opportunities unique to the
hardware security primitives. While cycle-accurate models
can theoretically reach better designs, their high runtime
cost restricts them to a smaller state space.

We present Obsidian, an optimization framework for find-
ing the optimal mapping from ML kernels to a secure ML
accelerator. Obsidian addresses the above challenge by ex-
ploring the state space using analytical and cycle-accurate
models cooperatively. The two main exploration components
include: (1) A secure accelerator analytical model, that in-
cludes the effect of secure hardware while traversing the
large mapping state space and produce the best m model
mappings; (2) A compiler profiling step on a cycle-accurate
model, that captures runtime bottlenecks to further improve
execution runtime, energy and resource utilization and find
the optimal model mapping.

We compare our results to a baseline secure accelerator,
comprising of the state-of-the-art security schemes obtained
from guardnn [33] and sesame [11]. The analytical model
reduces the inference latency by 20.5% for a cloud and 8.4%
for an edge deployment with an energy improvement of
24% and 19% respectively. The cycle-accurate model, further
reduces the latency by 9.1% for a cloud and 12.2% for an edge
with an energy improvement of 13.8% and 13.1%.

1 Introduction

Machine learning (ML) has become ubiquitous over the last
decade with its ability to solve real-life problems like im-
age classification [30, 42], speech recognition [29], language
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translation [65], playing games [61], recommendation sys-
tems [55] and content generation [18]. Many of these appli-
cations use proprietary models, to infer sensitive data like
genetic synthesis [5], disease classification [16, 17, 52], face
recognition [50, 59]. Prior secure accelerators [33, 34, 47, 60]
add an authenticated encryption (crypto) block at the mem-
ory interface of the accelerator to protect data confidentiality
and integrity in the main memory and while data transfer.

The memory protections, however, does not protect
against model weight extraction attacks [19, 66]. These side-
channel attacks, observe the memory access patterns [35],
or layer-wise memory bandwidth variations [12, 32] to infer
the layer hyperparameters. Sesame [11] proposed to incorpo-
rate a constant traffic shaping logic (shaper) to obfuscate the
memory demand bandwidth, similar to CPU traffic shaping
mitigation [25, 69]. It also proposes a hardware zeroization
block (zeroizer) to clean secret data from scratchpads before
context switch to protect memory safety.

While designs like Sesame incorporate side-channel de-
fences in ML accelerators, they introduce a significant la-
tency and power overhead beyond secure accelerators with
only memory protections. Such overhead prevents side-
channel defense techniques from getting adopted in real-time
edge ML inferences [1, 4, 8, 23] and cloud machine-learning-
as-a-service (MLaaS) deployments [3, 9, 64]. Data-centric
approaches like tensor tiling, loop ordering and dataflow
scheduling [43, 44, 56] improve the inference latency by
restructuring tensor computations for non-secure ML accel-
erators, but present a large state space. Several optimization
techniques like genetic algorithm [38, 40], search-space prun-
ing [56] and constrained optimization [36] is used to traverse
the search space. However, incorporating the security primi-
tives (i.e. crypto, shaper and zeroizer) into the analytical cost
model causes search space explosion because these features
entitle a spectrum of configurations. A second technique to
improve the inference latency in secure ML accelerators, is
to perform profile-guided optimizations [22] via compilers.
While, compiler profiling yields better mapping results, as it
is run either in real hardware [54] or cycle-accurate simula-
tor [58], a higher runtime cost restricts the state exploration.



Beyond state-space exploration, the inference latency
can be further improved with faster secure block imple-
mentations and using domain knowledge. For instance, se-
cureloop [48] used pipelined [15] or parallel [14] crypto block
implementations to increase throughput. MGX [34] used do-
main knowledge like the read-only nature of model weights
eliminates the integrity counters. Moreover, the integrity
counters for the input and output feature maps is generated
inside the accelerator to reduce metadata memory traffic.
Finally, sesame [11] used explicit instructions to perform
zeroization of only secret scratchpad data.

In this work, we introduce Obsidian, a design-space ex-
ploration tool to improve inference latency for secure ML
accelerators. Obsidian build an analytical model for the se-
cure blocks (crypto, shaper and zeroizer) to find a group of
best candidate mappings; The analytical model first uses
gamma [38] mapping tool to find the top-k mapping of each
layer. The tool then finds (1) The optimal integrity hash
granularity for each layer; (2) Estimates the shaper band-
width to maximize the energy-delay product; (3) Evaluates
the context-switch latency based on scratchpad utilization.
With all these inputs, a simulated annealing algorithm is run
to reduce the search space to top-m model mappings.

Next, it perform compiler profiling with a cycle-accurate
simulator to to efficiently utilize the shaper and the zeroizer.
The shaper introduces pipeline stalls during high bandwidth
data transfers, while adding fake transactions during idle
times to obfuscate the memory demand traffic. The profiler
efficiently schedule data transfers, even across layer bound-
aries to reduce system stalls, while reciprocating fake trans-
actions by real ones. The zeroizer introduces additional cycles
during context switch in time-shared multi-tenant accelera-
tors. The profiler introduces a data reuse analysis to proac-
tively clear scratchpad data, which are no longer needed for
future computation, amortizing the context switch latency.
The analytical stage efficiently searches a large state-space,
while the profiling phase addresses runtime bottlenecks.

We evaluate Obsidian secure state-space exploration
framework in two scenarios: (1) A cloud ML-as-a-Service
(cloud) and (2) An edge ML inference device (edge). The ana-
lytical phase reduces the inference latency by 20.5% in cloud
and 8.4% in edge, with 24% and 19% less energy consumption,
compared to a baseline secure accelerator with crypto, shaper
and zeroizer blocks. Next, the compiler profiling, further re-
duces the latency by 9.1% for cloud and 12.2% for edge, with
13.8% and 13.1% energy reduction. Finally, the proactive ze-
roizer reduces the data volume by 22.8% in cloud and 11.2%
in edge configurations, if the model is context-switched after
each layer in a time-shared multi-tenant deployment.

2 Background
2.1 State space exploration of ML workloads

The state space of each layer of an ML workload spans
across different tile size, dataflow and loop ordering map-
pings [43]. Fig. 1a shows the convolution layer, a widely used
operation in deep neural networks. K model filter weights,
each of dimension R X S is multiplied with a set of N input
feature maps (ifmap) with dimension X X Y to create N out-
put feature maps (ofmap), each of size K X X’ x Y’. The X’
and Y’ depend on X, Y, R, S and the filter stride. This opera-
tion creates a nested loop of seven independent dimensions
(K,R,S,N, X, Y, C), referred to as loop-nest in literature [56].
These seven loops can be re-ordered to find the best data
reuse, creating a search space of 7!. Each of the dimension
can be tiled to extract locality during computation. While
tiling provides more reuse opportunities, it increases the
state space to several hundreds of thousands of mappings.
Prior work [31, 38, 40] used random search, genetic algo-
rithms, machine learning etc. to search such a large space
to find an optimal mapping with the best latency or energy
consumption. These mappings are evaluated with a hard-
ware cost model [44, 56]. The cost model contains the power,
area and latency parameters for each accelerator component
like the processing unit (PE), scratchpad sram buffers, net-
work and off-chip bandwidth. It additionally reports energy
with activity counts for each component to compute energy
consumption.

AutoTVM [22] takes a different approach of performing
the tile search through compiler profiling. The different map-
pings are run in a real hardware [54] or a cycle-accurate sim-
ulator [21], instead of an analytical cost model. It searches a
much smaller design space (ideal for small accelerators), but
is able to factor in system bottlenecks in the mapping phase.

2.2 ML inference accelerator architecture

ML accelerators are specialized dataflow architectures per-
forming low latency inference. The popular accelerators [28,
37, 44, 54] have a decoupled-access execute (DAE) archi-
tecture [62] with their own instruction set using systolic
arrays [51] for efficient data movement. It comprises a com-
pute array of processing elements (PE), to perform matrix-
matrix or matrix-vector computations as shown in Fig. 1b.
The output of a compute operation is forwarded to the next
CU through a network-on-chip (NoC). There are individual
scratchpads for data inputs, model weights, and inference
outputs. These scratchpads are double-buffered to perform
data movement (loads and stores) and computation in par-
allel. Dependency queues between the scratchpads and the
compute blocks handle data dependencies. The co-processor
(CPU) interacts with the model vendor and the data owner
to load data into the respective memory regions. The model
algorithm is loaded into an instruction queue. Certain ML
accelerators have a dedicated ISA with binary generated
in a specialized compiler [21, 46]. Explicit load and store
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(b) Secure ML inference accelerator architecture

Figure 1. Design space exploration is performed by ordering and tiling tensor dimensions. The optimal mapping is
executed in a secure accelerator. The green blocks show the secure hardware, while datapath is shown in yellow.

instructions perform data transfer, while gemm and alu in-
structions perform tensor computation. The compute blocks
either accept data from the scratchpad buffer or from the
adjacent compute blocks in a systolic pattern [9, 44].

2.3 Secure hardware blocks in an ML accelerator

The green boxes in Fig. 1b show the security blocks. A con-
stant memory traffic shaper (shaper) includes a demand
queue to hold pending data transfer requests, and dispatches
them to the main memory at fixed intervals. The instruction
queue is stalled if there the demand queue is full, while a fake
transaction is generated into the same bank if the demand
queue is empty. The shaper obfuscates the memory traffic
observation by maintaining a constant throughput.

Secret data encryption and integrity verification is done
in the crypto block. Secret data is stored as ciphertext in
main memory along with a data hash. The crypto block con-
verts it to plaintext, and verifies the data hash, before loading
data in respective scratchpads. MGX [34] proposed to gen-
erate integrity counters inside the accelerator, eliminating
the need for merkle tree traversal and additional memory
transactions.

To protect memory safety against use-after-free attacks
in a multi-tenant environment, sesame further proposes a
zeroization logic to clear secret data from the scratchpad
during context switch.

The goal of this paper is to model these security hard-
ware blocks to find the optimal hash granularity for the
crypto block, the optimal memory bandwidth for the shaper
to reduce the overall energy consumption, and to reduce the
zeroization overhead during context switch. and to increase
the overall resource utilization by reducing the number of
fake transactions in the traffic shaper.

2.4 Context switch in multi-tenant accelerators

Time-sharing multiple ML model execution is critical in pro-
viding an overall quality-of-service (QoS) for ML accelerators.
Prior research [24, 26] schedule multiple DNN workloads
temporally or spatially in a single accelerator. The context
switch (CS) is typically done at a layer boundary, and de-
pends on the deadline of the pending workloads. The entire
scratchpad is zeroized to protect memory safety violations.
Sesame clears only a subset of scratchpad locations that hold
secret data with a hardware zeroizer. This not only improves
CS latency, but also reduces the system energy consumption.
The goal of Obsidian is to interleave the zeroize operation
with computation, to further minimize the CS latency.

3 Motivation and Goals
3.1 Execution bottlenecks of a secure ML accelerator

The constant memory traffic shaper proposed by sesame pro-
vides a fixed memory bandwidth for the entire model. While
it obfuscates the memory utilization side-channel, a lot of
fake transactions are generated, especially for the compute-
bound layers. Reducing the traffic shaper bandwidth reduces
the number of fake transactions, but also throttles larger
layer tiles, delaying the execution. Mapping space explo-
ration (MSE) can find optimal layers, with a greater synergy
between the data transfer and the compute units.

The data throughput to the accelerator depends on the
crypto block as each data needs decryption and integrity ver-
ification. A good MSE should incorporate the crypto through-
put, while finding the optimal mapping. The crypto block
performs additional memory transactions to load the hash
metadata from memory. This can be done by increasing the
data granularity for hash calculation. A large granularity,
however, can lead to additional redundant data loads, just
for integrity verification, giving diminishing returns. The



choice of hash granularity is workload dependent. Obsidian
explores across multiple data sizes for each layer to find an
optimal integrity granularity.

The context switch overhead in a multi-tenant setting is
the next bottleneck. Context switching additionally involves
removing secret data and states from on-chip scratchpad,
buffers and queues.

3.2 Challenges in design space exploration of secure
ML accelerators

Finding the optimal mapping for each layer is critical to
reduce the inference latency, and increase the effective ac-
celerator resource utilization. Analytical models [44, 56] are
widely used for design space exploration of non-secure ML
accelerators as discussed in § 2.1. Since the crypto, shaper
and zeroizer directly impacts the execution critical path, the
analytical model should include these components. This in-
troduces additional tunable parameters, like data hash gran-
ularity in crypto block, optimal bandwidth for the shaper etc.,
which further increases the search space.

Another challenge is that, many of these secure hardware
units have low level optimizations, that are not captured by
the analytical model. For instance, the vanilla constant traffic
shaping logic used in sesame, generates a lot of fake transac-
tions as discussed in § 3.1. Data from high throughput layers,
later in the model can benefit from idle memory cycles of
previous smaller layers. Analyzing such cross-layer optimiza-
tions is infeasible in an analytical model for large models
like the transformers. The analytical model also lacks cycle-
accurate information of memory idle cycles and scratchpad
utilization, which is required for exploring these load-sharing
optimizations.

While compiler profiling has the runtime resource utiliza-
tion, it cannot search such a large state space due to its higher
runtime. The goal of Obsidian is to harness the benefits of
both the analytical model and the compiler profiling. Hence,
we take a cooperative approach in finding the optimal map-
ping. The analytical model reduces the search space to find
near-optimal mappings, which are profiled in a compiler to
extract cross-layer load-sharing opportunities to find the
optimal mapping.

3.3 Effect of context switch overhead in multi-tenant
MLaaS accelerators

As mentioned in § 2.4, sesame zeroizes each secret scratch-
pad location on a context switch. Given the large scratchpad
size in cloud MLaaS deployments, zeroization increases the
overall context switch time significantly, as the zeroize
instruction is invoked after the completion of a layer com-
putation. This costs non-billing machine cycles to the cloud
service provider (CSP). Obsidian performs compiler analysis
to identify scratchpad data that can be removed immedi-
ately after compute consumption, against flushing it during
context switch.

3.4 Threat model and assumptions

An attacker can observe and tamper private data in the off-
chip memory and during data transfer over the memory bus.
The attacker has further access to the utilizaton information
of the read and write memory bus, and can use it to find
private input size or infer confidential model structure. An
attacker has the capability to read scratchpad locations, be-
fore and after a victim tenant execution in a multi-tenant
ML accelerator. The security guarantees are the same as
sesame [11], with the addition of the data integrity protec-
tion, as in guardnn [33].

Our focus is on the accelerator runtime, and we assume
that the accelerator is bootstrapped with secure boot and do
not contain any hardware trojans. We assume that a tenant
has verified the accelerator through remote attestation before
transferring private model and input into the accelerator as
demonstrated in prior works [6, 67]. The accelerator system
should also have a protected storage to store secret keys for
each tenant.

4 Obsidian state space exploration

Obsidian performs a cooperative mapping state space ex-
ploration for secure ML accelerators. The first stage is an
analytical phase, that finds the top-m mappings for the work-
load, followed by a compiler profiling phase to perform cross
layer data transfer to reduce execution stalls and increase
resource utilization.

We add the impact of crypto, shaper and zeroizer to mae-
stro cost model, a widely used analytical model for mapping
space exploration for non-secure ML accelerators. In addi-
tion to finding the optimal tile size and loop order for each
layer, the Obsidian model (1) Finds the optimal data granu-
larity for hash calculation; (2) Explores the optimal memory
bandwidth for the shaper; and (3) The zeroization cost as-
sociated with each mapping for every layer. Once, we have
the top-k layer mappings for each layer, Obsidian uses simu-
lated annealing to find the top-m mappings for the workload,
reducing the state space further from k! — m mappings.

These m mappings are profiled in a compiler, which com-
prises of two dataflow passes: (1) A data liveness analysis,
performing data reuse analysis on consumed data to decide
if it can be zeroized from the scratchpad. This analysis also
invalidates stale data in each scratchpad, making it available
for new subsequent data, that can reciprocate fake transac-
tions in the shaper. (2) A data dependency analysis finds the
earliest availability of each ifmap, that can be prefetched into
the scratchpad.

4.1 Obsidian analytical model

4.1.1 ML layer computation mapping. Fig. 2(A) illus-
trates the steps of finding the top-k optimal mapping for each
DNN layer. We leverage the maestro cost model to estimate
the runtime for each mappings, and use the gamma mapping
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Figure 2. The different optimization phases of Obsidian

tool to traverse the search space. The maestro model takes
hardware parameters as input, which includes the number of
PEs, the design dataflow, the size of each scratchpad, the NoC
bandwidth, and the offchip memory bandwidth. All these
parameters are the same as a non-secure ML accelerator, ex-
cept for the offchip memory bandwidth. Each data traverses
through a constant shaper with a fixed memory bandwidth,
followed by the decryption and integrity verification in the
crypto block. The effective memory bandwidth to the scratch-
pad effectively becomes the crypto block throughput. The
state space is traversed to find the top-k mappings (mapy.)
for each layer.

The choice of k defines the state space available to sub-
sequent optimization opportunities. Choosing a high value
of parameter k explodes the search space, while a low value
minimizes further optimization opportunities. A good set of
chosen mappings should have a small variance in inference
latency and energy consumption, compared to the top map-
ping. For a workload with [ layers, this step reduces the state
space to k!. We reason the choice of k in finding the optimal
mapping in § 4.1.6.

4.1.2 Exploring the optimal integrity granularity.
Data is streamed from the main memory at tile granular-
ity, which normally spans across several hundreds of bytes.
Having an integrity verification at 64 byte granularity in-
creases the number of hash metadata memory traffic. A larger
data granularity of hash verification (AuthBlock) reduces the
number of metadata loads for certain layers. However, there
are inefficiencies associated with a larger AuthBlock. Larger
AuthBlock might require redundant data loads, just to per-
form integrity verification, if only a subset of the AuthBlock
is required for computation. With a limited memory band-
width available in the shaper, making an optimal AuthBlock
choice is critical to DSE. We make a key observation, that
even when we load additional redundant data for a larger
authentication block, many of them are reused later in the
computation. We take this reuse opportunity into consid-
eration while searching for the optimal AuthBlock for each
top-k layer mapping.

The memory traffic estimation block in Fig. 2(B) estimates
the total memory traffic generated for each AuthBlock. For

a workload with [ layers, k mappings for each layer and h
possible AuthBlock values, the memory traffic estimation
step is performed for k X [ X h times.

Algorithm 1: Finding the optimal AuthBlock

1 k & NumMapping

2 h « AuthBlockChoices

3 traceSeq « []

4 memTraffic[k] « 0

5 hopr < Ofori=1tokdo
6 forj=1tohdo

7 traceSeq = GenerateMemTrace (map;, h)
8 Np, Ng,N; = DataReuse (traceSeq)
9 traffic = (Np + Ng + Nj)

10 if memTraffic[i] > traffic then

memTraffic[i] = traffic
hapt = J
end

11
12

13
14 end

15 end

Function DataReuse (traceSeq):
for addr in traceSeq do

if addr.label == ’redundant’ then

16
17
18

19 spad = addr.type

20 dist «— SearchDownstream(addr, spad)
21 end

22 if dist < spadSize[spad] then

23 addr.label = "demand’

24 RemoveNextAccess(addr)

25 end

26 end

Algorithm 1 details the steps of AuthBlock exploration for
each layer. First, a memory trace is constructed for each map-
ping i and granularity j by the GenerateMemTrace function
in line 7. This function first creates a demand transaction
address sequence. Next, it generates the hash integrity and
redundant transactions and insert it adjacent to correspond-
ing demand transaction to create a traceSeq. Each element



in traceSeq is a tuple of {addr, type, label} fields. The addr
field stores the memory address, the type field denotes if the
data is destined for ifmap, weight or ofmap scratchpad, and
the label field indicates if the data is a demand, a redundant
or a hash request. The traceSeq list is fed in the DataReuse
function as shown in line 8. The DataReuse function finds if
any of the redundant request is reused as a demand request.
The label of those redundant transaction is promoted to de-
mand and the corresponding demand request is removed. A
valid data reuse happens if the reuse distance is less than the
scratchpad size as shown in lines 19-24. Finally, memory traf-
fic is calculated by adding the number of demand requests
(Np), redundant requests (Ng) and integrity requests (Ny) as
shown in line 10. Lines 11-12 finds the hash granularity with
the minimum number of memory transactions for the i
layer.

4.1.3 Exploring the optimal shaper bandwidth. In this
phase, we compute the shaper bandwidth and the corre-
sponding energy consumption for each mapy with optimal
granularity. The scratchpad is double-buffered and data load
of tile; occurs in parallel to the tile;_; computation. The map-
ping runtime (R;) for a layer i is calculated in § 4.1.1 with
the offchip memory bandwidth set as the crypto through-
put (bwerypto). For a memory bound (MB) layer mapping,
the optimal shaper bandwidth (bwgpaper) is calculated as the
minimum bandwidth required for the crypto block to main-
tain the throughput of real data as shown in Eq. (1). The
shaper will additionally have to load N and Nj transactions
for integrity verification. For a compute bound (CB) layer
mapping, bwe,ypro can be relaxed to load Np demand trans-
actions by the tile compute time, in addition to integrity
traffic as shown in Eq. (2)

bwsthper = bwerypro + (N + N1) /R (1)
bwfhiper = (ND +Nr+ NI)/Ri (2)

4.1.4 Finding the top-m model mappings. So far, we
generated the top-k layer mappings with optimal hash gran-
ularity and shaper bandwidth requirement. There is still a
state space of k! for a model with [ layers which is quite
large for performing compiler profiling. In this phase, we
use simulated annealing to reduce the state space to top-m
mappings. Simulated annealing is a meta-heuristic algorithm
and is designed to find optimal solutions for a large state
space.

Simulated annealing algorithm: The algorithm is de-
tailed in Algorithm 2. The first step is to choose an initial
model mappings (map;). A mapping from each layer is ran-
domly chosen to serve as the initial mapping as shown in
lines 4-6. The energy-delay product (EDP) is calculated for
this mapping by the EnergyDelayCost function in line 8.
Next, we run the simulated annealing algorithm for N iter-
ations. For each iteration, a new map is generated by the
GetNeighbor function, and the EDP of the new mapping

is calculated in line 13. If the new map has a better EDP, it
replaces the old mapping in the next iteration. However, if
the old mapping was better, it can still be replaced by the
new mapping given the temperature as shown in line 17.
The reason is to avoid local minimas while traversing the
state space. Line 20 updates the temperature across iterations,
which decides the probability of selecting a new mapping
with a larger EDP than the previous mapping. The initial
temperature is set high to enable larger exploration and is
reduced to Tf;ne in the later iterations to converge on the
optimal result. This algorithm is spawned m times in parallel,
each with a different initial mapping to find the top-m layer
mappings. Multiple runs with a different initial mapping
provide higher probability of finding optimal solutions in
different regions of the mapping space.

Algorithm 2: Simulated annealing for generating
top-m from k! model mappings

1 L < numLayers
2 N « numlterations
3 map; — []
//Choose an initial model mappings
4 forl— 1toLdo

5 r < random(1, k)
6 map,-.append(map,lc[r])
7 end

//0ptimal mapping with simulated annealing
8 Cost « EnergyDelayCost(map;)
9t Tini
10 for n<— 1toN do
11 i « random(1,n)
12 NewMap; «— GetNeighbor(map;)
13 NewCost «— EnergyDelayCost(NewMap;)
14 if NewCost < Cost then

15 ‘ map; = NewMap;

16 end

17 else if e(Cost=NewCost)/t 5 yandom(0,1) then
18 ‘ map; = NewMap;

19 end

20 t « UpdateTemperature(Tinis, Tfinai,n)
21 end

Computing the objective function: The objective func-
tion used is energy-delay product (EDP) of each mapping as
shown in Fig. 2(B). At each iteration n, the algorithm com-
putes the EnergyDelayCost function to compare between
the model mappings. A new model mapping NewMap; com-
prises of a set of chosen layer mappings. The model EDP is
simply the sum of the EDP the individual layer mappings.
Each layer mapping is either categorized as a compute-bound
(CB) or a memory-bound (MB) layer. The latency of a CB



mapping is directly taken from the output of the tiling phase
( § 4.1). The shaper and the crypto units do not introduce
any additional delay, as the PE throughput is the bottleneck
in this case. In a MB mapping, the system is bottlenecked
by the crypto unit. Hence, the runtime is computed by the
multiplying the number of memory transactions and the
shaper bandwidth. The energy is computed by the activity
count of all the accelerator components. The CB mapping
also includes the energy spent on fake transactions sent to
memory.

Equalizing the shaper bandwidth The different layers
of the optimal mapping can have different bandwidth. But to
ensure security, the shaper should have a constant bandwidth
across the entire model execution. So, while computing the
EnergyDelayCost function, the memory bandwidth tuned
to multiple values. First, the model is run with the highest
layer bandwidth to compute the energy. Then the bandwidth
is lowered in fixed steps to iteratively find the optimal shaper
bandwidth for the entire model.

4.1.5 Secret zeroization. If the state-space exploration is
performed for a multi-tenant deployment, the zeroization
latency should also be considered for each layer mapping.
The zeroization latency for each mapping is calculated from
the peak scratchpad utilization (util;eak bits) reported by
the tiling phase, where s denotes the scratchpad type (ifmap,
weight, ofmap). if the scratchpad srams are addressed by a
bits, and it takes C cycle to write an address, the latency is
given by Eq. (3).

tzero = Zs=i,wo futil;/cﬂ *C (3)

This latency is added to the mapping latency of each layer.
The energy consumption is computed by the same equation,
by multiplying the unit sram write energy multiplied by the
peak scratchpad utilization.

4.1.6 Impact of exploration parameters. Our state
space exploration consist of two parameters: (1) The num-
ber of layer mappings (k) generated by the tiling exploration
phase, and (2) The number of model mappings (m) generated
by the simulated annealing algorithm.

A large k increases the state space of the simulated an-
nealing, and might result in poor solution. It also increases
the time to compute optimal hash and shaper bandwidth.
On the other hand, reducing the value of k yield a shal-
low search space. For each layer, we discard mappings that
have >10% overhead from the best mapping. We observe that
these mappings are rarely chosen in the simulated annealing
step. Moreover, we retain more mappings for layers having
a higher runtime, like the embedding layer in transformer.
Since, these layers contribute significantly to the overall in-
ference latency, enabling the model mapper to explore more
options often lead to better solutions. We chose a variable
k ranging from 2 for small layers to 16 for the transformer

embedding layer using a simple heuristic, that is a function
of layer runtime and the number of available mappings.

The model mapping parameter is critical to determine the
time taken for the compiler profiling. The value of m is varied
for the most complex model in our evaluation (transformer)
and we see that the performance improvement from the
profiling stage flattens out at m=40. So, we use this value for
all our benchmarks.

4.2 Obsidian compiler profiling

The analytical state space exploration deduces the top-m
model mappings. This provides the compiler profiling step
with a feasible search-space to find the optimal mapping. In
this phase, Obsidian opportunistically re-orders the memory
transactions to utilize the fake transaction intervals. This
stage is particularly useful when consecutive layers are CB
and MB. The memory idle cycles of the CB layer can be
used by the MB layer to prefetch data, reducing the memory
stalls. The profiles performs a (1) Data liveness analysis
to minimize scratchpad occupancy at each cycle, by only
retaining active data; and a (2) Data dependency analysis
to find demand addresses that are ready to be promoted in
the instruction stream. The output of this compiler stage is
the optimal mapping of the entire model, that is used during
runtime execution.

4.2.1 Data liveness analysis. Prefetching new data from
subsequent layers depends on the scratchpad availability.
This compiler pass performs reuse analysis on the data con-
sumed by the compute unit at each cycle. If the data has a
large reuse distance, greater than the scratchpad size, the cor-
responding scratchpad location is added to a free list. Future
demand requests are promoted up the instruction stream
to fill the scratchpad. Once, they are added to the demand
queue, the shaper loads these data instead of sending fake
transactions to the main memory. If there are multiple can-
didates can be loaded at any instant, they are sorted based
on the computation sequence. This ensures better utilization
by only maintaining active variables in the scratchpad for
the minimal time. This analysis is applied to all the top-m
layer mappings, which are then ranked based on runtime.

This pass is also used to perform proactive zeroization.
If there is a context switch scheduled at the end of a layer,
instead of loading new demand requests from later layers,
the scratchpad location is zeroized immediately after com-
pute consumption. This process is interleaved with the layer
computation, and reduces zeroization data volume during
context switch.

Note that the data prefetching approach can also be ap-
plied in loading integrity metadata. If the design has a hash
storage buffer, memory idle cycles can be used to load future
data hash values. This increases the integrity throughput



for layers, which has a low integrity granularity (e.g., depth-
wise convolution) and a high metadata traffic. We leave this
optimization to future work.

4.2.2 Data dependency analysis. The prefetched data
need to be ready, before it is being brought into the scratch-
pad. A data dependency analysis is performed by the com-
piler to ensure correctness of prefetched loads, as Obsidian
changes the instruction order. This is not required for loading
model weights, as they are read-only and does not depend on
past layers. Input feature map loads, on the other hand, can
only be prefetched if the output feature maps are generated
from the last layer. We perform a dataflow analysis to find
the feature map dependency between layers and create a se-
quence of available data. The output correctness is ensured
even after the change in the instruction order.

The data dependency analysis also open the opportunity
for store to load forwarding. If a freshly generated ofmap
will be immediately used as ifmap for a subsequent layer, the
data is directly forwarded from output to input scratchpad.
Store to load forwarding not only reduces the memory traffic
congestion, but also eliminates the crypto delay. This is partic-
ularly useful for small layers used in resnet and transformer
models. The smaller layers have less scratchpad occupancy,
leaving ample opportunity of store to load forwarding. Over-
all, we perform this analysis for all the top-m configurations
to generate the instruction stream for the optimal mapping
sequence.

5 Implementation

First, we enlist the secure accelerator configurations used
in our evaluation in § 5.1. Next, we describe the different
components of the analytical model in § 5.2, and the cycle-
accurate simulator in § 5.3. Finally, we list the benchmarks
used in our evaluation in § 5.4.

5.1 Accelerator configuration

The ML inference accelerator is a decoupled-access-execute
(DAE) unit with a systolic array implementation. Such ac-
celerators are widely used in cloud [2, 9] and in edge de-
vices [23, 54]. These accelerators have a fixed dataflow to sim-
plify the hardware design. We choose an output-stationary
dataflow, used in Google TPUs in our implementation, but
Obsidian can also be used for other dataflows [23, 45]. The

Parameter Cloud MLaa$ Edge Device
Dataflow output-stationary (os)
Memory type DDR4 @ 2400MHz DDR3 @ 1066MHz
Crypto Throughput 6.4 GB/s 800 MB/s
Frequency 800MHz 100MHz
Compute units 256 X 256 32X 32
Input Scratchpad 6144 KB 512 KB
Weight Scratchpad 6144 KB 512 KB
Output Scratchpad 2048 KB 192 KB

Table 1. Obsidian design parameters used in the ana-
lytical model and the cycle-accurate simulator.

crypto unit shown in Fig. 1b use parallel AES-GCM imple-
mentation from prior work [14]. The integrity counters are
generated inside the accelerator, as implemented by mgx [34].
The secure design also includes a constant traffic shaper,
whose bandwidth is programmed during tenant bootstrap-
ping as proposed by sesame [11]. It also includes a hardware
zeroizer implementation, taken from sesame. The input write
scratchpad port is multiplexed between the main data path
and the zeroizer unit.

We evaluate Obsidian on two secure accelerator designs,
with configurations listed in Table 1. The first configuration
simulates a cloud MLaaS deployment similar to a Cloud TPU-
v1 [37], while the second smaller configuration simulates an
edge deployment, with configuration similar to Eyeriss-v2
accelerator [23]. We use a pipelined crypto unit [15] having 1
cycle encryption and a 1 cycle integrity latency. Multiple of
these units are instantiated to achieve a crypto throughput
listed in Table 1.

5.2 Analytical model implementation

The layer tiling and loop order exploration is performed by
the gamma [38] mapping tool and the latency and the energy
consumption is estimated with the maestro [44] cost model.
The datasize of individual data is 32 bits. The dataflow is set
to output stationary (os) and the offchip bandwidth is set to
the crypto throughput mentioned in Table 1. The energy con-
sumed for each decryption and integrity verification is taken
from prior work [14]. These numbers are multiplied with the
activity count of the encryption and the integrity units. The
hash granularity is tuned from 64B to 4kB in powers of 2. We
implement a memory trace generator, that takes mapping
loop-order and tiles to generate a demand traffic sequence
for each mapping. The trace generator inserts the redun-
dant transactions and integrity hash memory requests, while
exploring the optimal hash granularity. The final memory
trace is used to estimate the energy consumed during data
transfers. The energy cost of each read and write request
is taken from DRAMPower [20]. The peak occupancy of in-
dividual ifmap, weight and ofmap scratchpads for different
mappings provide the zeroization latency. The unit latency
and energy cost for zeroization is the same as scratchpad
write operation in maestro. The analytical model first gen-
erates top-k mappings for each layer, which is fed to the
simulated annealing algorithm to generate top-m mappings
for the entire model. The algorithm is run for 1000 iterations
with m parallel instances.

5.3 Simulator implementation

Obsidian uses the cycle-accurate scale-sim [58] simulator to
evaluate the compiler optimizations. The simulator is aug-
mented to include the secure hardware blocks and also an
instruction queue. The model binary is loaded in the instruc-
tion queue. The load and store transactions are sent to
the demand queue of the traffic shaper. There is a separate



shaper logic for the read and the write bus, with individual
demand queues. These queues are of finite size and stalls the
system during times of high demand. The shaper also sends a
fake transaction every time the demand queue is empty. The
compute instructions are issued to the PE for computation
and the zeroize instructions are sent to the zeroizer. The
crypto block is simulated with a constant latency added to
each memory transaction at the appropriate granularity. The
zeroizer block shares the scratchpad write port with the main
data pipeline. It contains a queue for holding zeroize instruc-
tions, similar to the sesame implementation and zeroizes
256 bytes in scratchpad every cycle. The main data path has
a higher priority than the zeroize instructions. The DRAM
transactions are simulated with the ramulator [41] tool. The
arrival time of each transaction is added to the simulator tick
of request dispatch. The DRAM follows a close-row policy
to eradicate timing attacks from row buffer hits.

The simulator is fed with a model binary, generated by the
compiler. The load and store instructions are loaded into
the respective traffic shaper demand queue. The gemm instruc-
tions are simulated by the compute unit, and the zeroize
instruction zeroizes specific regions of a scratchpad.

5.4 Benchmarks

Benchmarks are chosen to evaluate different types of ML
models. This includes applications like image classification —
Alexnet [42] and Resnet-50 [30]; object detection — Faster-
RCNN [57], recommendation systems — DLRM [55], a gam-
ing bot — AlphaGoZero [61], the encoding layer of a LSTM
language translation model — Translate [7], a basic trans-
former with text embeddings — Transformer [63].

6 Evaluation

We present the benefit of the analytical exploration phase
in § 6.1. Next, § 6.2 shows how the compiler phase reorders
load transactions to further improve the runtime of each
mappings. Finally, § 6.3 evaluates the effectiveness of proac-
tive zeroization in a time-shared multi-tenant environment.

6.1 Analytical exploration phase

We showcase the runtime latency reduction across different
mapping phases of Obsidian analytical model. The results
of each analysis is normalized against a baseline mapping
(basemap). The b basenq, configuration uses an unoptimized
mapping. We take the top mapping after running the tiling
exploration for one generation, with an integrity granularity
of 64B, and a constant traffic bandwidth set by the user.
Tiling and loop order exploration: This stage provides
an initial approximation of the best layer mappings. We
run the gamma mapper with runtime latency and energy
consumption as our fitness function for multiple genera-
tions. The algorithm stops when the improvement of the
best mapping is <5% compared to the last two generations.

Convolution layers with a small ifmap and filter sizes, found
in Resnet50, FasterRCNN and transformer converge, after
running <100 generations. Large convolution layers found
in alexnet and DLRM takes 100-300 generations. The em-
bedding layer of translate and transformer and some layers
in resnet50 and FasterRCNN with a large number of chan-
nels take >1000 generations. A couple of large convolutional
layers of DLRM and AlphaGoZero also fails to converge
and we see a large performance variation in the mappings.
For these runs, we terminate the run after 1000 generations.
Fig. 3 shows the performance variance of 20 randomly cho-
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Figure 3. The boxplot shows the performance of 20
model mappings with layer maps chosen from the
top-k output of the tiling and loop order exploration.

sen mappings of each model normalized against base;,qp.
To show the performance variance, we derive the best map-
ping by taking the top mapping from each layer. The worst
model mapping is derived by choosing the bottom mapping
of each layer. We see an average latency improvement of
22.5% in cloud MLaaS and 26.2% improvement for the edge
deployment for the latency critical layer. There is a larger
latency variance in the cloud MLaaS deployment than the
edge device. This is due to more tiling options created by
a larger accelerator. Some of the configurations are worse
than the baseqp. This is due to the fact that we sort the
genetic population after the completed generation to extract
the top-k mappings. The bottom mappings of some of the
layers perform worse than the top configuration after the
first generation (used in basep,qyp). These configurations will
easily be rejected by the simulated annealing algorithm.
Exploring the optimal integrity granularity: Once we
generate the top-k mapping for each layer, we explore the op-
timal integrity granularity. The data sizes considered for hash
computation is varied from 64B to 4kB stepping by a power
of 2. The optimization target is to find the setting with the
minimum number of memory transactions. Fig. 4 compares
the memory traffic of the top-1 configuration normalized
with the basep,, traffic. The memory traffic is computed
by adding the optimal hash mapping for each layer, having
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Figure 4. Memory traffic reduction after hash granu-
larity optimization. {Tp, Tz, Ty } are demand, redundant
and hash memory requests.

the minimum number of memory requests. There is an av-
erage memory traffic reduction of 29.1% for cloud MLaaS
and 31.2% for edge deployment. Large layers in AlphGoZero
benefit from a larger hash granularity. Same is true for lay-
ers with large number of channels found in Resnet50 and
FasterRCNN. This traffic reduction saves system energy and
memory congestion, brought by an efficient data reuse for
each layer, along with less memory integrity traffic.

Finding the model mappings: We find the top-m model
mappings by the simulated annealing (SA) algorithm. The
top-m mappings uses energy-delay product as the optimiza-
tion target. Fig. 5 compares the EDP of the top-m model
mappings normalized against the top-1 configuration gener-
ated by the tiling phase. SA is able to find better mappings
from the search space in all cases. The reason is the fact
that SA chooses an optimal shaper bandwidth with the EDP
objective. This leads to an EDP improvement of upto 15%
in cloud and 20% in edge compared to the layer mapping
outputs.
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Figure 5. EDP of top-m model mappings generated by
simulated annealing. The result is normalized against
the model map with all the top layer mappings.

6.2 Compiler optimizations
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Figure 6. Runtime and energy consumption compari-
son among three configurations. The best bar is a non-
optimized mapping, the second one is the top-1 map-
ping from analytical model, while the last one addi-
tionally includes the compiler optimizations.

6.2.1 Performance and energy improvements. We fur-
ther tune the top-m mappings in a cycle-accurate simulator
described in § 5.3 to find the optimal mapping. We profile
each configurations to promote more load transactions to re-
ciprocate fake transactions into successful prefetches. Fig. 6
compares the performance and the energy consumption of se-
cure ML executions normalized to a non-secure baseline. The
mapping for each layer of the non-secure baseline is gener-
ated by the tiling exploration stage with memory bandwidth
set in Table 1. The bars show the normalized runtime, while
the line plot shows the normalized energy consumption. The
first bar shows the runtime of the base;q4rge;. For brevity, we
call this configuration as noOpt. The second bar is the top
configuration generated by the analytical model (AmOpt).
The third bar represents the Obsidian configuration with
both analytical and compiler optimizations (Obsidian). The
AmOpt configuration brings down both the latency by 20.5%
for the cloud and 8.4% for the edge deployment. The cloud
configuration presents a larger state space and more opti-
mization opportunities for the analytical model compared to
a constrained edge deployment. There is also an energy im-
provement of 24% for cloud and 8.4% for the edge. This is due
to the tile mapping creating a greater synergy between the
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Figure 7. Fake transaction reciprocated by the compiler
by promoting data loads from subsequent layers.
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Figure 8. Data volume zeroized by proactive zeroization
with layer computation for cloud and edge devices.

memory and the PE throughput, an optimal hash granularity
and traffic shaper bandwidth selection.

The compiler phase, further improves the cloud latency
and energy by 9.1% and 13.8%, and the edge latency and
energy by 12.2% and 13.1%. The edge deployment, with its
more constrained resources, benefits more from compiler
optimizations. The edge execution has multiple bottlenecks,
which are relaxed by store to load forwarding as well as from
load promotion.

Overall, Obsidian provides an average speedup of 29.6%
in cloud and 20.6% in edge deployments over the base;qp
configuration. It also provides an energy improvement of
37.8% for cloud MLaaS$ and 21.5% for edge devices. Obsidian
provides a faster secure ML inference, with energy efficiency
in both datacenters and battery-operated edge devices.

6.2.2 Reciprocation of fake transactions. We deep dive
into the real cause of the performance and energy improve-
ment from compiler profiling described in § 6.2.1. One of
the main reason is replacement of fake transactions gener-
ated by the shaper with useful requests. Fig. 7 shows the
reduction in the number of fake transaction in the overall ex-
ecution compared to basemqp. The two plots show the cloud
and edge results respectively. The AM region of each bar
shows the fake traffic reduction by the analytical model by
efficient state space exploration. The Profile region shows
how the compiler passes bring down the fake transaction,
reciprocating it with useful memory traffic. The low fake
transaction reciprocation for alexnet, as large layers will up
the scratchpad reducing load promotion opportunities. The
high reciprocation for DLRM, due to its small filter size and
compute intensive layers. It creates greater chance to load
subsequent model weights into the scratchpad. The smaller
layers found in Resnet50 and Fasterrcnn lead to more than
20% fake transaction reciprocation.

6.3 Proactive zeroization

We consider a time-shared multi-tenant accelerator, where
models are context switched at each layer boundary. The
compiler liveness analysis zeroizes stale data in each scratch-
pad, in parallel to the computation. In this case, cross layer
load promotion is disabled as each consecutive model layer is
interleaved with other tenants. The zeroize volume in Fig. 8 is
defined by the percentage of secret data zeroized proactively
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during layer execution. The cloud execution involves larger
tiles with higher compute duration, presenting a higher op-
portunity for proactive zeroization than edge devices. The
liveness analysis zeroizes, 22.8% data volume for cloud and
11.2% for the edge deployment. DLRM layers are compute
bound with larger tiles, which provide more opportunity to
interleave zeroization with computation. Same is observed
for certain Resnet50 and FasterRCNN layers with a large
channel size, which led to larger tile mappings.

7 Related works

State space exploration of ML accelerators.
Timeloop [56] and maestro [44] build analytical mod-
els to explore the large design space and show the benefits of
loop ordering and tensor tiling operations. However, these
models do not model the security primitives. Secureloop [48]
builds on timeloop to find the optimal authentication block.
While they perform a more exhaustive search to find the
optimal hash block, it is not clear how their approach extend
to other security primitives (traffic shaper and zeroization
logic). Another line of work [22, 68] uses compiler profiling
for state space exploration. However, these works are also
limited to non-secure accelerators.

Secure ML accelerator architectures. The growing impor-
tance of privacy preserving ML inference in cloud and edge
has led to several secure accelerator trusted execution envi-
ronment designs [11, 13, 33, 47, 60]. Most of these designs
focus on optimizing the crypto block. For instance, TNPU,
GuardNN, and MGX [33, 34, 49] proposed tree-free integrity
verification exploiting DNN-specific data access patterns. We
leverage this optimization in our design. Sesame addition-
ally includes a constant traffic shaper and zeroizer to protect
model hyperparameters and the scratchpad memory safety.
Obsidian focuses on improving the performance and energy
consumption of secure accelerators through state-space ex-
ploration. A group of work [27, 53] use homomorphic en-
cryption and multi-party computation to secure accelerators,
but these methods are orthogonal to the TEE based design
used in this work.

Multi-tenancy in ML accelerators. Prema and AI-MT [10,
24] explored preemptive scheduling algorithms for tempo-
ral multi-tasking on accelerators. Both explored interleav-
ing memory and compute operations to improve efficiency.
MAGMA [39] explored optimization algorithms for map-
ping multi-tenant workloads onto accelerators. While, ten-
ant scheduling is orthogonal to this work, zeroization is
necessary to protect memory safety during context switch.
Obsidian optimizes the zeroizer to reduce context switch
latency.

8 Conclusion

Obsidian explores the workload state-space exploration in a
secure accelerator. The analytical and the compiler profiling
approach has its own set of problems. While the analytical



model explores a larger state space, the compiler profiling
takes runtime execution bottlenecks into account. Obsidian
uses a combination of these approaches to find the optimal
mapping. By leveraging the large state space exploration
capability of an analytical model, it reduces the space to a
smaller number of mappings to be profiled in a compiler.
This approach finds workload mappings that greatly reduce
the runtime latency and the energy consumption of a secure
ML accelerator inference.
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