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Abstract
Data containers enable users to control access to their data
while untrusted applications compute on it. However, they
require replicating an application inside each container —
compromising functionality, programmability, and perfor-
mance.
We propose DATS — a system to run web applications

that retains application usability and e�ciency through a
mix of hardware capability enhanced containers and the in-
troduction of two new primitives modeled after the popular
model-view-controller (MVC) pattern. (1) DATS introduces
a templating language to create views that compose data
across data containers. (2) DATS uses authenticated storage
and con�nement to enable an untrusted storage service, such
as memcached and deduplication, to operate on plain-text
data across containers. These two primitives act as robust de-
classi�ers that allow DATS to enforce non-interference across
containers, taking large applications out of the trusted com-
puting base (TCB).
We showcase eight di�erent web applications including

Gitlab and a Slack-like chat, signi�cantly improve the worst-
case overheads due to application replication, and demon-
strate usable performance for common-case usage.

CCS Concepts • Security and privacy → Authentica-
tion; Access control; Authorization; Web application
security; Operating systems security; Information �ow con-
trol;
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1 Introduction
Web applications have to implement a wide array of security
features, such as input sanitization, authorization, and access
control checks [13]. This burden often causes developers to
implement these features incorrectly [8, 18] or fail to update
vulnerable libraries promptly [19], making web applications
particularly susceptible to “zero-day” vulnerabilities [5]. A
compromised web application can then ex�ltrate data to
unauthorized users and cause large data breaches. Moreover,
the threat of exploits forces considerable penetration-testing
and compliance-certi�cation work that slows down applica-
tion development.
Ideally, users and enterprises would store their data on

storage platforms (e.g., Google Drive or electronic medical
record (EMR) systems), use untrusted web applications that
integrate with these storage platforms, and still protect their
data from being breached — i.e., enforcing mandatory ac-
cess control (MAC) over the untrusted applications. Figure 1
shows a simpli�ed setting where a doctor (Dave) shares fold-
ers with patients Alice, Bob, and Eve and uses untrusted
applications for messaging and scheduling.

A natural defense strategy is to use data containers: run an
entire application instance within the context of each data ob-
ject, with each instance isolated into a separate container[35,
43, 64, 77]. The access control rules will hold by de�nition
even if an application instance is compromised or malicious
(no information can be transferred across containers for
di�erent data objects). One could use language-level infor-
mation �ow control (IFC) to achieve the same goals (e.g.,
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Figure 1. Current systems have application-centric access con-
trols (top) and cannot prevent data leaks; e.g., a compromised or ma-
licious “Scheduling” application can leak Alice’s events to Eve (from
“Fracture” to “Flu”). Data-centric access controls (bottom) enforce
users’ ACLs on all applications: data is con�ned to its respective label.

Hails [38] provides a Haskell framework that attaches la-
bels to data in database models), but this compromises pro-
grammability. Developers rely on large bodies of existing
frameworks and languages, therefore we cannot limit them
to only using vetted options. The advantage of most OS
container technologies is that they can isolate unmodi�ed
code.

Data containers raise two new challenges. Usability: for
example, a calendar application cannot aggregate the in-
formation from appointments in di�erent data objects into
a single page. E�ciency: applications cannot use a single
storage service, like deduplication, across data objects.

In this paper we present the DATS system, which refactors
authentication and access controls outside of untrusted web
applications. DATS couples data containers along with two
new robust declassi�cation [76] mechanisms in a novel way
to trivially enforce access controls at the container level. It
leverages the model-view-controller (MVC) pattern, com-
mon in many web applications, to provide application pro-
grammability by presenting a familiar programming model
to developers and supporting several existing web applica-
tion languages and frameworks.
First, DATS recovers usability by securely composing

views from multiple data objects. Applications can provide

an untrusted view template to a trusted template declas-
si�er to aggregate information from each per-data object
container into a single page, like in many templating lan-
guages [16]. The declassi�er transparently applies language
level IFC to prevent information leaks across data objects.

Second, DATS improves e�ciency by securely sharing un-
trusted storage services across data objects. Applications can
use a trusted storage declassi�er that interposes between ap-
plications and untrusted sharedmodels (e.g., for dedupli-
cation, key-values stores, compression, etc.). The declassi�er
performs integrity checks on each data read operation (i.e.,
“get(keyx)”) to ensure that it only returns the value from
the most recent “put(keyx, val)” operation on the same
data object – interestingly, we use this to ensure that storage
does not leak information across data objects.
Container technologies are available in production sys-

tems, but replicating an application per data object has in-
trinsic ine�ciencies known as multi-execution [26]. Perfor-
mance is largely secondary for enterprises (they have far
fewer users than internet-scale services), but multi-execution
can become problematic when operating across a large num-
ber of data objects (e.g., search). Therefore, we explore using
hardware-assisted thread containers to avoidmulti-execution.

DATS and the client browser are the only components that
reside in the trusted computing base (TCB), while ensuring
applications remain programmable, usable, and e�cient. IFC
e�orts like Hails [38] and Jeeves [74] are instead a great �t
to the trusted developers of DATS’s TCB. Enterprises can
then leverage the vast space of existing and untrusted web
applications, frameworks, languages, and developers while
at the same time avoid costly application code audits. We
make the following contributions:

• We introduce DATS, a programming model that en-
ables web services to be run in data containers — DATS
uses two new robust declassi�ers to retain function-
ality and OS-level multi-execution to minimize con-
straints on programmers (§§ 3 and 4).

• We evaluate programmability and security by devel-
oping 4 applications and porting 4 existing ones (§§ 5
and 6).

• We evaluate performance with existing OS-level con-
tainers [10, 60] and a HW-capability architecture [32,
66] (§ 7).

2 Motivation
Many enterprises, like hospitals, use web-based applications
for security-sensitive data. Currently, the TCB includes ev-
ery application since an application-level exploit can put
all data at risk. Such applications are thus built, certi�ed,
and audited for security �rst, with performance being a sec-
ondary concern [9]. This accrues large costs from highly
skilled, security-aware programmers and requires arduous



penetration-testing and compliance-certi�cation work be-
fore the smallest changes can be pushed into production.
This is clearly at odds with rapid application development
and deployment cycles and cost-e�ciency; one cannot em-
ploy the vast majority of existing web developers, who are
not security-savvy, nor leverage existing applications and
development frameworks. We therefore need a systematic
approach to provide security and cost-e�ciency for such
security-sensitive applications.

Figure 1 shows a simpli�ed setting where a doctor (Dave)
shares folders (i.e., access control domains or security labels)
with patients Alice, Bob, and Eve and uses untrusted applica-
tions like “Messaging” and “Scheduling”. Access control lists
(ACLs) provide users a simple and intuitive way to express
data con�dentiality expectations for many applications; e.g.,
Dave explicitly decides to share folder “Fracture” with Al-
ice in Figure 1. Our “folders” are the “control domains” in
security literature, and folder ACLs serve as security labels
for the data inside folders.

Existing systems provide application-centric policies (top
of Figure 1); they can isolate applications from each other,
but a compromised application can access data frommultiple
access control domains, even if users correctly set their fold-
ers’ ACLs. For example, a buggy or malicious “Scheduling”
application can store events intended for folder “Fracture”
into “Flu” when processing Dave’s appointments. Even if all
applications restrict Eve to only access “Flu”, this folder now
contains events ex�ltrated from “Fracture”. In the worst
case, data from all folders could be ex�ltrated, violating
all user con�dentiality expectations. Instead, a data-centric
MAC policy (bottom of Figure 1) provides an intuitive alter-
native, where data from di�erent folders cannot interfere
with each other.

In this section, we describe the challenges in enforcing
data-centric MAC over untrusted applications, and the op-
portunity inherent in the structure of MVC applications to
refactor security out of the application requirements.

2.1 Threat Model
Our threat model for web applications has the client browser
and the server-side platform (i.e., the hardware, hypervi-
sor, OS, and DATS’s core components) as part of the TCB.
The applications, their libraries, and storage services (e.g.,
key-value stores) are hosted on the platform but are outside
the TCB; this also includes application code running on the
client’s browser (e.g., using JavaScript). DATS aims to pre-
vent the following attacks by refactoring authorization and
access control out of the untrusted components:

Code-driven folder interference. Untrusted code and
developers are considered an attacking subject — either di-
rectly through malicious intention or indirectly through
buggy code — and must not be able to leak data across any
two folders (or arbitrary internet addresses). In information

�ow terms, the user’s requirement is non-interference [39]
across folders.

User-driven folder interference. Users (authorized or
not) are considered an attacking subject and must be pre-
vented from violating non-interference across unauthorized
folders. This includes exploiting untrusted code through
memory errors, malicious inputs, etc. or running arbitrary
code to access unauthorized folders.

We otherwise consider authorized users trusted; they fully
delegate trust in handling sensitive data to other users with
whom they share folders. We do not protect against poor
judgment when sharing a sensitive �le with another user,
who is free to manually communicate its contents to another
authorized folder or anywhere else.
We limit the scope of our problem and list complemen-

tary techniques to handle other risks to user data:

• Integrity: We do not prevent untrusted applications
from mangling user data or destroying it. Systems
such as Frientegrity [36] handle it orthogonally.

• Information leaks via timing or termination channels:
We assume techniques that either normalize (e.g., de-
terministic execution [25] or predictivemitigation [23])
or randomize (e.g., fuzzing [65]) the timing of outputs
(e.g., on a storage!app channel, possibly with be-
havioral/anomaly detection for termination channels).

• Privacy-preserving data mixing: Cross-folder function-
ality such as analytics (e.g., clustering or training classi-
�ers) fundamentally violates the access control policies
set by users. Complementary approaches such as dif-
ferential privacy [34, 50, 51, 55, 56] or quasi-identi�er
based privacy [46, 49, 63] show that this functionality
can directly integrate with DATS: the functions can
be executed in isolation and only their perturbed out-
put released (e.g., GUPT [51]). Similar declassi�ers can
be built for advertisement impressions [44] and for
sending debugging output [27] back to developers.

2.2 Challenges in Enforcing Data-Centric MAC
OS-level MAC. The simplest way to enforce data-centric
MAC is to run an application process per folder inside an
OS-level container using LinuX Containers [10], SELinux
MAC [60], capabilities [69], or OS-level IFC (OS-IFC) [35, 43,
52, 77].

This approach curtails crucial functionality. It cannot sup-
port web pages that display data from multiple folders (i.e.,
cross-folder views), since the application has limited access
to a single folder. For example, Dave will need to open each
per-folder “Scheduling” application to manually �nd a free
slot for a meeting, a tedious and error-prone operation.
A per-folder application instance can also be ine�cient,

since a single MVC model cannot optimize storage across
folders. For example, data deduplication has to work across
all folders in order to �nd unencrypted data to consolidate.



Storage services such as in-memory key-value stores (e.g.,
Redis, memcached) or distributed coding also work across
folders and will be ine�cient if we run a separate instance on
each folder. Furthermore, running multiple instances of an
application can sometimes lead to poor resource utilization
in the micro-architecture (i.e., multi-execution [26]).

PL-level MAC. Programming-language (PL) level IFC [38,
58, 75] can control the �ow and aggregation of information
inside an application (such as creating cross-folder views)
and enforce data-centric MAC policies. However, it requires
careful annotation of program inputs, intermediate variables,
and outputs to ensure information does not �ow between
inputs and outputs with incompatible ACLs. This makes
PL-MAC notoriously complex to use in practice, requires de-
velopers to have extensive security expertise, and constrains
them to speci�c programming frameworks. Further, PL-MAC
only works as long as application developers are trusted [58]
or when the trusted platform developers maintain the data
model for all third-party applications [38].
Finally, optimizations, such as deduplication, cannot be

represented in a PL-MAC solution, since it compares data
across folders and executes code based on this comparison.

2.3 Opportunities in MVC Applications
MVC frameworks are popular in web applications and re-
quire developers to write separate components and strict
interfaces between views and controllers as well as controllers
and models. We can use these interfaces to transparently
enforce data-centric MAC over the entire web application.

Views in MVC applications separate presentation from ap-
plication logic using templating languages. These languages
are meant to arrange data in di�erent ways instead of cre-
ating new information from data. This allows us to impose
PL-level MAC without being undermined by pointers, re�ec-
tion, and other features of full-featured languages.

Model (i.e., storage) optimizations implement diverse func-
tionality in arbitrary languages, but they do not a�ect the
ACLs of user data. Furthermore, several popular and complex
web services expose variants of a simple put-get interface:
deduplication, in-memory key-value stores (memcached),
and cloud-based storage services such as Amazon S3 and
Google Drive. Interposing a transparent integrity-checking
proxy on this common interface enables untrusted services
to work with plain-text data. This is essential for services like
deduplication (that will not work if data is encrypted) and
allows services to compress, index, or otherwise optimize
storage across all folders.

3 Design of the DATS System
DATS ensures that untrusted applications cannot mix infor-
mation across folders by executing a unique web-application
instance for each folder. In this section, we describe how

DATS enables untrusted applications to implement cross-
folder views and storage without breaking this folder non-
interference policy. We also describe hardware-assisted OS
containers that help reduce the overhead of multi-execution
in DATS. We begin in Figure 2 with a typical user work-
�ow and walk through the key steps in the lifecycle of an
application on DATS.
A user begins by visiting the DATS Desktop (§ 3.2). Here,

DATS exposes Data objects (called folders) to users, similar
to platforms like Google Drive, Box, or Dropbox. Users ex-
press their con�dentiality policies (i.e., who can access which
folders) using simple per-folder ACLs. Every folder can hold
arbitrary data, making them independent of application-
speci�c constructs likemessages, documents, medical records,
etc. DATS enforces folder-level ACLs on untrusted third-
party applications that attach to users’ Drive/Box accounts.
Folders are color-coded in the �gure (green, red, and blue)
to easily track information �ow across the system. DATS im-
plements users, folders, and folder ACLs. Thus, applications
need not implement further ACL rules.
After managing their ACLs, a user selects an application

and launches its landing page A . On this page, users can
set the application’s preferences used across all their folders,
like pro�le pictures, since this data is made explicitly public
to all folders. We term this as a non-folder view. From this
page, a user can trigger a cross-folder view of information
B , like a list of upcoming appointments. The user can then
click on a speci�c appointment to load its per-folder view C
and get or set additional information. From here, a user can
move between cross-folder (appointment list) and per-folder
(appointment information) views.

We will now describe the server-side actions using the
same work�ow. First, DATS starts an application in a non-
folder container ( 1 ), which cannot access user data from any
folder (only sees the user’s public settings and application
resources). DATS uses this container to create cross-folder
views ( 2a and 2b leading to B ) and then sets up per-folder
containers in 3 as the user traverses links out of cross-folder
into per-folder views. We now describe the developer’s view
of application components on DATS.
App components contain entire (untrusted) applications

and are instantiated multiple times. Each instance runs in
an OS-level container [4, 10, 59] (app row in Figure 2) with
a trivial data-centric MAC policy: it has exclusive access to
a single folder and no other external resources. Containers
get a standard system view, including system calls, libraries,
and runtimes for any development framework and also ex-
tend to the client browser. This is key for programmability
given the diversity in toolkits and languages for developing
applications.
This “data container” approach, however, forbids cross-

folder functionality, breaking the usability and e�ciency
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Figure 2. Example web page �ow from a user (“client-side”), DATS’s main components, and an application’s app-template-storage components
(and their relation to MVC). Application code, application data, and storage services are untrusted (grayed areas and colored boxes), while DATS’s
trusted components (boxes with white background) enforce folder non-interference. Application components run inside OS-level containers, which
can very easily enforce per-folder MAC policies. Note that the client’s browser is allowed to run untrusted application code (e.g., JavaScript).

of most applications. DATS thus provides two robust de-
classi�cation [76] mechanisms for cross-folder functionality,
ensuring that untrusted code cannot a�ect declassi�ed data.
Template �les describe how to aggregate information

from multiple folders into a single cross-folder view, making
applications usable. The template in Figure 2 is provided
by the non-folder app in 2a . A trusted Template Declassi-
�er in�ates templates with data from each per-folder app
instance ( 2b ) through a simple form of PL-level IFC: it gen-
erates HTML/JS by processing only one data element at a
time, and each output (e.g., link) can only send information
back to the app instance that produced it (e.g., 3 ).
Storage services (untrusted storage row in Figure 2) im-

plement the application’s cross-folder models to make stor-
age e�cient. DATS interposes a trusted Storage Declassi�er
on the app–storage communication. The Storage Declas-
si�er uses integrity checking to ensure that each response
value of a “get(key)” request from a folder is the same as
the last “put(key, value)” for that folder. Interestingly,
integrity checking the put-get interface and con�ning the

storage services in a container enables these untrusted ser-
vices to work with plain-text data.

We will now discuss the security invariants in DATS (§ 3.1)
followed by details about each component (§§ 3.2 to 3.6).

3.1 Security Invariants in DATS
DATS guarantees end-to-end folder non-interference, cover-
ing apps and information �ow-secure views and storage.
Each app instance runs in a con�ned container – conceptu-
ally, each container covers server and client devices – with
access to only one folder. This ensures baseline folder non-
interference for app instances.

DATS’s Template Declassi�er in�ates untrusted templates
from the application with untrusted results from many fold-
ers to construct a view, but ensures that communication
from the view back to an app instance only uses data from
that same instance. The Template Declassi�er prevents ex-
plicit information �ows by ensuring each HTML element
that can send a request (e.g., a link) contains information
from at most one folder and points to the app instance that



has access to it. It also prevents implicit information �ows
by using a template language that does not allow predi-
cates or conditional loops over results from di�erent folders.
Fortunately, view templating languages are already moving
towards such restrictions to minimize business logic inside
the presentation layer [12].
DATS’s Storage Declassi�er ensures that a get value re-

turned to an app equals that last value that was put by the
app – hence, the untrusted storage service can operate on
plain-text data across folders and yet be prevented from
breaking folder non-interference. Integrity checking in Stor-
age Declassi�er not only prevents storage from explicitly
copying Alice’s data into a get response for Bob, but also
prevents implicit leaks where storage returns Bob’s value
X if Alice’s secret bit is 0 and Bob’s value Y if Alice’s bit is
1. storage is con�ned to a container with no outputs other
than to the Storage Declassi�er , assuming that timing/termi-
nation channels from storage to app are addressed using
complementary techniques (see § 2.1). DATS’s Storage Declas-
si�er and con�nement together demonstrate a novel method
of using an authenticated storage interface to enforce non-
interference.

DATS’s guarantees rely on a few fundamental primitives:
containers on server and client, IFC in the Template Declas-
si�er , and integrity checking in the Storage Declassi�er . The
Template Declassi�er and Storage Declassi�er provide robust
declassi�cation [76] for cross-folder functionality – i.e., guar-
antee that untrusted code or data in a folder cannot a�ect
messages/data that is sent from a cross-folder container back
to a di�erent per-folder container.

DATS extends containers into the client browser by using
one sub-domain per app instance (browser origin in Figure 2).
DATS then activates the Same-Origin Policy (SOP) and Con-
tent Security Policy (CSP) on the client browser to limit
access to remote resources and con�ne untrusted client-side
code (e.g., JavaScript) within each sub-domain (container).
DATS also drops all cookies set for parent domains. Contain-
ers on the server can be implemented directly as reference
monitors (e.g., SELinux or LXC), with capabilities, or with
information �ow control – DATS deployers can pick one
based on performance and compatibility constraints.
Components interact with DATS abstractions using an

authenticated RESTful interface. Therefore, trusted compo-
nents are no di�erent than the untrusted ones, except that
they are authorized to perform operations such as user au-
thentication. Internally, each container is identi�ed by the
application it is running (e.g., Health), the user it is running
for (e.g.,Dave), and the folder it has access to (e.g., “Fracture”).
As used throughout this section, the green container in Fig-
ure 2 would be identi�ed as <Health, Dave, Fracture>.

3.2 Data Object (folder) and User Management
DATS provides users with two trusted user interface (TUI)
applications – Login authenticates and manages users, and

the Desktop allows users to create, delete, and share folders
and launch untrusted applications. Access control over fold-
ers lets users control the granularity at which their data is
shared. A user may wish to assign a single medical encounter
to a folder, allowing them to share each of their encounters
individually, or a user may wish to place all their encounters
within a single folder, allowing them to share their entire
medical history at once. While users determine how much
is shared, developers control the minimum unit of sharing.

DATS provides two services to retain application function-
ality after removing access-control and authentication: app
instances contact the User Service to see which users have
access to their current folder, and the Template Declassi�er
uses templates to create cross-folder views (§ 3.4).

DATS provides the User Service because applications work
with the ‘user’ abstraction for a large portion of their func-
tionality, in addition to access control, and removing the
concept of users from applications only works for the sim-
plest of applications. For instance, Mattermost (see § 5.1) has
92 di�erent SQL queries involving its user table, some of
which are complex and include joins across multiple di�er-
ent tables. The User Service eases application development by
allowing per-folder app instances to read information about
the users who have access to the apps’ folder and to trigger
noti�cations to other app instances associated with the same
folder (e.g., those running for another user).

3.3 App Components
The app components contain most of the application logic
and are runwithin containers. They communicate with client
browsers through the trusted DATS Proxy (not shown in
Figure 2 for clarity). The Proxy routes tra�c between the
sub-domains used by client browsers and the app instances
(i.e., containers) on the server. Non-folder and per-folder
functionality are the most common ( 1 and 3 ) and can have
native performance (DATS acts as a reverse proxy between
the client browser and app instances).

The Proxy extends containers to the client side to enforce
indirect folder non-interference: it activates the browser’s
SOP and CSP and drops cookies for parent domains (see § 3.1).
Every time an app is instantiated it is assigned a new random
sub-domain. For example, DATS maps the non-folder view
in A of Figure 2 to the app instance <Health, Dave> ( 1 ,
without access to any folder), and the per-folder view in
C to the instance <Health, Dave, Fracture> ( 3 , with
access to folder “Fracture”); the cross-folder view in B also
has its own sub-domain, but its contents are served directly
by the Proxy (see § 3.4).
DATS has a trusted Container Manager that can be in-

stantiated in multiple nodes to scale horizontally. It enforces
direct folder non-interference by creating mutually isolated
containers: each container is assigned an IP and port to listen
for requests and only has access to its assigned folder (if any,
since non-folder app instances cannot access any folder) and



<a href =�/ home�>Home </a>
{{#DATS.results}}
{{#events}}
<a href=
�{{#DATS.enter}}/view?{{title}}{{\DATS.enter}}�>
<span >{{title}}</span >

</a>
{{\events}}
{{\DATS.results}}

(a) Template

[{�events�:
[{�title�:�Flu�}]}]

[{�events�:
[{�title�:�Fever�}]}]

[{�events�:
[{�title�:�Fracture�}]}]

.

(b) Per-folder JSON data

<a href =�/ home�>Home </a>
<a href=�/random1/view?Flu�>

<span >Flu</span ></a>
<a href=�/random2/view?Fever�>

<span >Fever</span ></a>
<a href=�/random3/view?Fracture�>

<span >Fracture</span ></a>
.

(c) Expansion

Figure 3. A cross-folder template and an example expansion from the DATS Health application. DATS keywords are black and bold and
DATS Health’s per-folder data is highlighted in red. Some of the HTML has been omitted for brevity.

to DATS’s public API (see § 3.6). To avoid the latency costs of
spinning up containers on-demand, the Container Manager
uses container reuse, pooling, and prefetching.

3.3.1 Hardware-Accelerated Thread Containers
By default, DATS uses OS-level containers [4, 10, 59] to
enforce isolation (such as LXC and SELinux as described
in § 4.1) and make applications programmable (developers
can pick from many application stacks in existence today).
Nonetheless, usingmultiple app instances has inherentmulti-
execution overheads [26], which are especially acute when a
cross-folder view, such as search, requires streaming through
all folders that a user has access to. Clearly, such large sweep-
ing operations will put container startup and network setup
latencies in the critical path of a view query.

To address this slowdown, we have designed thread-level
containers in DATS. We use SELinux [60] and �ne-grained
capability-based architectures [32, 45] to build “thread con-
tainers” so that the DATS Proxy and app code can execute
in the same process. This allows the Proxy to trigger a large
number of thread containers – one app runs in each thread
and performs the query (e.g. search) over data in one folder.
§§ 4.1 and 7.2 describe our implementation of hardware-
assisted thread containers, even though one could also use
a DIFC architecture like Raksha [31] or Loki [78] instead
(where each folder would be a mutually unordered label in
the policy lattice). Interestingly, thread containers are in line
with event-triggered plugins used on a web server frontend
(e.g., WSGI [20]).

3.4 Template Components
Cross-folder views retain critical functionality to make ap-
plications usable, but must maintain folder non-interference.
Templates compose views declaratively with information
from multiple folders without executing any untrusted code.
Developers can use any static resource in cross-folder views
along with some trusted JavaScript provided by DATS.

Templates are written in a simple language, like views in
many existing MVC web applications [16]. They are based

on the stateless Mustache language [12] (without explicit
control-�ow operations like loops), making it easy to ap-
ply IFC to ensure folder non-interference1: each element in
B contains information from at most one folder and can
only send a request to the app instance that provided that
information (e.g., URLs for images, links and forms).
The Template Declassi�er forbids arbitrary JavaScript in

templates, since current browsers do not provide IFC on
client-side code (e.g., unlike COWL [61]). Instead, the Tem-
plate Declassi�er recognizes additional tags that expand to
trusted snippets of JavaScript for searching, sorting and auto-
completing elements (see Table 1). Such tags can also be
used to generate scripts that integrate di�erential privacy
databases like PINQ [50] into a DATS application.

In practice, we found that a most application functionality
lies in non-folder and per-folder views (and can therefore
include arbitrary JavaScript). Also, programmers can use
their own templating language to produce a valid template.

3.4.1 Cross-Folder View Example
This section explains the steps involved in using a cross-
folder view for the examples in Figures 2 and 3.
First, the user clicks the “Appointments” link A in their

browser and an HTTPS request for /view is sent to the
Proxy. The Proxy determines the app instance to forward
the request to based on the request’s sub-domain. The non-
folder application responds with a template 2a (Figure 3a)
and triggers a view of data across all folders by setting the
x-dats-crossfolder header �eld.

The Proxy redirects the client to a new temporary sub-
domain B while it constructs the cross-folder view. The
Proxy creates (or reuses) an app instance for each of a user’s
folders and replays the /view request to each of them. Each
per-folder app instance responds to the request with a JSON
list (Figure 3b). The DATS API informs App instances if they

1 The same approach could also be applied to any application generating
user-facing views (e.g., using Android layout templates). A purposely simple
templating language side-steps the precision vs. soundness problems of
applying IFC to full-featured languages [58, 68].



Endpoint Usage

User Service
/users Get per-folder user info.

Proxy
/port Connect to a storage service.

Application
/dats/start Send folder and user info to apps.
/dats/update Send updated user info to apps.
/dats/quit Apps return from per-folder view.

Template
DATS.results In�ate region with per-folder info.
DATS.enter Create per-folder URL.
DATS.search Trusted JS for searching tags.
DATS.sort Trusted JS for sorting by tags.
DATS.autocomplete Trusted JS for autocomplete by

tags.
Table 1. Public API in DATS. User Service, Proxy, and Template
endpoints are implemented by DATS. Application endpoints are im-
plemented by untrusted apps.

are executing in non-folder or per-folder mode so that logic
on the “shared” /view endpoint can change accordingly.
The Template Declassi�er collects the per-folder results

and uses them to in�ate the template ( 2b ). The template’s
top-level tag, DATS.results (Figure 3a; there can be many,
but not nested), is in�ated with each per-folder result in
turn (Figure 3b). The result is served by the Proxy as the
cross-folder view in B .

URLs in in�ated regions need to use the DATS.enter tag or
an error is returned. The tag adds a random pre�x (tracked
by the Proxy; see below) to URLs. Programmers can use
their own tags to reference per-folder information inside a
DATS.results block (e.g., red tags for events and title in
Figures 3a and 3b).

The Proxy redirects a request for /home in Figure 3c (or any
other resource outside the DATS.results region; outer or-
ange region with horizontal stripes in B ) to the sub-domain
for the non-folder app instance (i.e., that serving A ). A re-
quest for /random3/view?Fracture (or any resource cre-
ated with DATS.enter; inner folder-colored regions in B ) is
instead redirected to the sub-domain for the corresponding
per-folder app instance (i.e., that serving C , by stripping the
random3 pre�x to get the endpoint /view?Fracture that 3
will serve).

3.4.2 Non-Secure Alternatives
The intuitive solution to creating cross-folder views based
on OS-level IFC would be to create an app instance with
read-only access to all folders. This folder will acquire the
highest secrecy label and cannot let users click on links in
views (e.g., an inbox) to go to a message in a folder. This is be-
cause the app could embed information from folder “Fracture”
into a message to a container for folder “Fever” (e.g., to edit
an appointment there) and violate folder non-interference.

Message @ Fracture
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Figure 4. Implementation of DATS; colors and gray denote untrusted
code and italics show the mechanisms used. All DATS components
run in containers. The TUI application is not shown for brevity.

Alternatively, one could whitelist speci�c URLs and the data
sent through each URL to prevent explicit leaks as above.
In this case, a malicious app can create an implicit leak by
picking white-listed message A vs. message B to indicate 0
vs. 1 – the view component in DATS fundamentally requires
information �ow control inside a container. We emphasize
that DATS could have used any language with information
�ow control for templates – we picked a logicless templat-
ing language since software engineering practices simplify
the Template Declassi�er’s task.

3.5 Storage Services
Storage services increase application e�ciency by running
untrusted functionality on plain-text across folders (i.e., cross-
folder storage services or models in an MVC application).
E�ciency can be in terms of storage space (e.g., cross-folder
data deduplication) or other resources (e.g., using a single
service instance to avoid multi-execution [26]).
DATS isolates storage services inside a container, and

app instances must use the Proxy’s /port endpoint to re-
quest access to storage instances. It returns a connection
to a transparent trusted Storage Declassi�er (also inside a
container) interposed to the storage service to ensure that
it cannot take data from one folder and output it to another
folder’s app component. Storage Declassi�ers associate the
requesting app’s IP to their assigned folder.



Many popular applications have models using (variants
of) put–get interfaces, where integrity checks are su�-
cient to ensure non-interference. The declassi�er checks
that a “get(key)” request returns the most recent value
for “put(key, value)” (otherwise aborts the connection).
The same approach can be transparently applied to other
interfaces, like disk blocks or �le systems [62].

Finally, many large code-bases use trusted databases that
have already gone through extensive audits (e.g., trusted
developers assign roles to implement access policies). In
this case, the declassi�er creates per-folder databases on a
single storage instance and uses the existing access control
mechanisms to limit each app instance to its corresponding
folder’s data. The database should maintain data integrity,
but that is not a requirement (e.g., IntegriDB [79]).

3.6 Application Instance Lifecycle and APIs
Table 1 summarizes the API available to untrusted compo-
nents whose lifecycle is managed by the Proxy. Even if not
shown in the �gures for clarity, all containers have read-only
access to a folder that contains their code. Non-folder con-
tainers also have read-write access to a folder that can be used
to store user-speci�c settings, and per-folder containers get
read-only access to it (ensuring folder non-interference). Per-
folder instances cannot directly link back to a non-folder or
cross-folder view since that could be used to ex�ltrate infor-
mation across folders. Instead, the Proxy intercepts requests
to /dats/quit and redirects the client to the cross-folder
view that initiated a transition to that per-folder view.

4 Implementation of the DATS System
Figure 4 shows all the components described in § 3 and how
they interact, with an emphasis on DATS’s TCB. It includes
four Storage Declassi�ers we wrote for MySQL, MongoDB,
Redis, and a custom deduplication backend. We wrote 13 K
lines of TCB code in Python, Node.js, and C. The TCB can
be substantially reduced by running containers on security-
oriented OSs like seL4 [42] or HiStar [77]. Instead of trusting
the hypervisor, we could also use attestation and trusted
boot [41, 54] to bootstrap DATS on a remote cloud.
MongoDB and Redis are not limited to put/get, but we

�nd this su�cient for our diverse applications (see § 5). Also,
app programmers can always use a per-folder instance of
their storage service.

The Proxy is a multi-process Flask [6] application running
behind Apache with MySQL as a persistent database, Re-
dis [15] as a short-term database and for distributed locks,
and Celery [2] to run cross-folder requests in parallel. API
operations are authorized by inspecting the requestor’s IP;
this is the simplest mechanism that can monitor folder access
grants (each container has a unique IP).
The Proxy authorizes access to container sub-domains

using a session cookie set by the trusted Login application

and also performs a simple form of caching of the per-folder
JSON results used to feed templates. The caching API is
not described due to space constraints, but follows concepts
similar to existing web caching technologies.

4.1 Container Backends
O�-the-Shelf Container Techniques. LinuX Containers
(LXC) [10] provide lightweight OS virtualization; we did not
try conventional VMs since LXC is more e�cient [37, 57].
Containers are created as a “clone” of a base �le-system with
additional folders overlaid on top using AUFS [1] and are
isolated at the network level using iptables.
SELinux [48, 60] implements �exible and �ne-grained

MAC for Linux. Each container gets a virtual network inter-
face and a binary policy module with the necessary labels to
access �les and network ports.

HW-Capabilities Based Thread Containers. When a
Proxy thread “enters” a container (executes a per-folder re-
quest using the app code), we prevent it from sharing mem-
ory with other threads using the CODOMs capability archi-
tecture [66]. The app code is loaded into a separate CODOMs
protection domain that isolated threads have read and exe-
cute access to. Each thread gets a read-only capability point-
ing to its input request and two read-write capabilities that
point to their private stack and heap pool, respectively. To
prevent sharing through the �le system, we added a Linux
system call (used by the Proxy) that privatizes the thread’s
�le descriptor table and SELinux label. When a thread re-
turns from its app call, the Proxy restores the per-process
�le descriptor table and SELinux tag, and frees the thread’s
private memory pages (the private heap and stack).

4.2 Enforcing Client-Side Non-Interference
DATS uses the Template Declassi�er and standardized browser
security controls (con�gured by the Proxy on the headers of
the responses it serves to the client) to avoid:

Leaks through request URLs/contents. The trusted
Template Declassi�er knows the HTML structure and se-
mantics of tags that trigger browser requests (e.g., links and
forms) and include untrusted client-side code (forbidden in
cross-folder views). Each tag includes information from a
single DATS.results block, ensuring that request URLs and
contents have information from a single folder (i.e., a <form>
block cannot span across multiple DATS.results blocks).
Also, all URLs inside a DATS.results block are generated
with a DATS.enter block — making sure the URLs cannot
leak per-folder data through a request to another container.

DATS sets the browser’s CSP to only allow trusted client-
side code in cross-folder views (otherwise untrusted code
could observe and modify a view to leak information).

Leaks through request headers. DATS’s Proxy drops
cookies set by untrusted app responses for any origin not



assigned to that app instance/container (i.e., drops cook-
ies for parent domains). The browser’s CSP (and the newer
“Referrer-Policy”) ensures no data is leaked through the “Re-
ferrer” header (i.e., each view type is on a di�erent origin).

Leaks to third-party domains. The browser’s SOP for-
bids client-side code to access other non-origin domains.

Leaks through URL guessing. Randomizing container
sub-domains ensures apps cannot ex�ltrate information by
generating a link or redirecting to an arbitrary sub-domain.

5 Programmability Evaluation
Developers can write or port applications to DATS without
any security expertise, since authentication and access con-
trol are o�oaded to DATS. Instead, they need only to make
functionality-based decisions: establishing a minimum unit
of sharing (§ 3.2), writing templates for cross-folder views
(§ 3.4), and deciding what storage services to use (if any;
§ 3.5). We evaluate programmability in DATS by porting 4
open-source applications and writing 4 applications from
scratch, all summarized in Table 2. They cover diverse use-
cases, like messaging, voice/video chats, document editing,
software development, and electronic medical records.

We describe Mattermost and DATS Health in detail since
they stress user management and template creation tasks.
5.1 Mattermost
Mattermost (version 3.7) is a messaging application written
using Go (server side), React [14] (client side), and MySQL
for storage. It has the concepts of teams (user groups) and
channels to organize conversations based on similar topics.
We selected channels as the minimum unit of sharing,

since they are a natural choice. A user can thus choose to
create multiple teams and channels on a single folder or
use only one channel per folder from the DATS TUI. The
developer only provides the functionality of channels and
teams as a way to organize data without tying it to access
control (see § 3.2).
5.1.1 Cross-Folder Views
Mattermost by default lacks the ability view a single uni�ed
“inbox” of messages across all teams (the user has to enter a
team and channel to viewmessages).Wewrote a new landing
page with a template (140 lines of HTML, application tags,
and DATS tags) that displays a timeline of recent activity
across all teams. The template includes application-speci�c
tags (e.g., Teams) embedded within the DATS.results block.
The per-folder request returns a JSON list with the teams,
channels, and most recent messages for each channel stored
on that folder. The template also uses the DATS.enter tag
on each message to link it to a per-folder app instance that
will show the full conversation.

5.1.2 User Authentication and Access Control
We removed user authentication from Mattermost and in-
stead use the User Service to have an up-to-date per-folder
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{	“EventList”:	[
{	“2-1-2017”:	[{

“EventName”:	“Lecture”,
“Time”:	“5pm”}

]},
{	“12-15-2017”:	[{

“EventName”:	“Eve	Appt.”,
“Time”:	“1pm”}

]},	
{	“repeatsWednesday”:	[{

“EventName”:	“Bob	Appt.”,
“Time”:	“12pm”}]},

]}

{{#EventList}}
{{#2-1-2017}}

<a	href=
“{{#DATS.enter}}/event?n={{EventName}}{{/DATS.enter}}”/>

{{/2-1-2017}}

{{#repeatsWednesday}}
<a	href=
“{{#DATS.enter}}/event?n={{EventName}}{{/DATS.enter}}”/>

{{/repeatsWednesday}}

{{#repeatsOnFirst}}
<a	href=
“{{#DATS.enter}}/event?n={{EventName}}{{/DATS.enter}}”/>

{{/repeatsOnFirst}}
{{/EventList}}

29 30 31 1 2 3 4

5 6 7 8 9 10 11

Figure 5. Snippet from the DATS Health calendar template page.
Template tags (left) are matched with the per-folder JSON (right)
and in�ated to create the calendar information.

“Users” table (we added endpoints /dats/start and
/dats/update; see § 3.6). This is crucial to Mattermost: e.g.,
it displays a list of recent activity for a particular team by
issuing an SQL join query with its “Users”, “TeamMembers”,
and “Status” tables.

5.2 DATS Health
DATS Health is an MVC application written from scratch
by undergraduate students. It allows doctors and patients
to manage medical records (each medical visit is an “en-
counter”) and allows users to schedule appointments through
three di�erent calendar views (month, week, and day). En-
counters were selected as the minimum unit of sharing. Un-
like Mattermost, calendar views in DATS Health require
an extensive use of templates (endpoints /month?<value>,
/week?<value> and /day?<value>).

Figure 5 shows an example of how we constructed the
(non-folder) template and the (per-folder) JSON results for
the /month endpoint (the other two work in a similar way).
The template contains an empty grid with non-event infor-
mation, such as month name and dates for each cell. Each
cell is a DATS.results block contains application-de�ned
tags that match the corresponding JSON results.
The JSON results are pulled from a MongoDB database

and returned when a per-folder app instance receives a
request to the same /month endpoint. Each event is em-
bedded in the EventList array in one of three types of
tags. The �rst one is a list of all events for the actual date
(e.g., 2-1-2017). The other two tags are for weekly (e.g.,
repeatsMonday, repeatsTuesday) andmonthly events (e.g.,
repeatsOnTheFirst, repeatsOnTheSecond).

The Template Declassi�er goes through each DATS.results
block and iterates across each per-folder result (EventList).
Any eventwith amatching template tag (2-1-2017, repeats-
Wednesday, and repeatsOnTheFirst in Figure 5) is then
inserted into the template.



Application Framework DATS E�ort Total TCB CVEs CVEs Description
(LOC) (kLOC) w/ Leak

Gitlab Rails +386 -50 145.2 / 1,352 13 / 83 9 / 45 Repository management
A: +36 / T: +100 / P: +250 [Ported] Minimum unit: project

Mattermost Mux +443 -800 191.4 / 1,219 42 / 55 19 / 28 IRC chat
A: +25 / T: +100 / P: +318 [Ported] Minimum unit: channel

Hacker Slides⇤ Flask +150 -100 16.9 / 1,482 - / 40 - / 19 Slide presentation and editing
A: +13 / T: +124 / P: +23 [Ported] Minimum unit: presentation

Let’s chat⇤ MEAN +260 -500 23.5 / 1,891 - / 25 - / 4 Real-time messaging using websockets [17]
A: +21 / T: +100 / P: +139 [Ported] Minimum unit: channel

DATS Health⇤ MEAN +101 5.6 / 1,284 - / 25 - / 4 Doctor-patient appt. management w/ calendar
A: +36 / T: +30 / P: +35 [New] Minimum unit: appointment

DATS Coding⇤ Django +130 1.2 / 1,545 - / 254 - / 169 IDE for code editing with terminal
A: +15 / T: +100 / P: +15 [New] Minimum unit: code �les

DATS PDF⇤ Node.js +90 1.1 / 1,071 - / 25 - / 4 PDF document viewer
A: +15 / T: +25 / P: +50 [New] Minimum unit: PDF document

DATS Image⇤ MEAN +90 1.1 / 1,131 - / 25 - / 4 Upload and display images
A: +10 / T: +50 / P: +30 [New] Minimum unit: image �le

Table 2. DATS E�ort: lines of code (LOC) to make an application DATS-aware. Total TCB: LOC of just application code (left) and including all
its dependencies (right). CVEs: public CVEs since 2013 [3] for the application (left) and entire application stack (right). CVE w/ Leak: CVEs which
contain information disclosures for the application (left) and entire stack (right). With DATS, the entire application SW stack is outside the TCB
and folder interference is systematically eliminated.
(*): CVE information not available. (A): Application code. (T): template contents. (P): Use of DATS’s APIs.

The repeats. . . tags are crucial to avoid producing
large JSON results where an event must contain a key for
every date it should be displayed on (up to 365 entries per
event per year). Additionally, they allow for JSON result
caching (see § 4) across di�erent templates.

6 Security Evaluation
DATS mitigates all data-disclosure vulnerabilities by refac-
toring authorization and access control out of untrusted web
applications (i.e., moving applications outside the TCB). Ta-
ble 2 summarizes the total number of vulnerabilities found in
the applications and their third-party dependencies that we
have run on DATS. Unprevented vulnerabilities include bro-
ken functionality that does not produce information disclo-
sures, such as unauthenticated team creation in Mattermost2.
We will now discuss vulnerabilities found in Mattermost
and Gitlab to understand their root causes and how DATS
prevents them.

Mattermost has disclosed 42 vulnerabilities since 2015 [11],
19 of which DATS would prevent. They include cross-site
scripting, remote code execution, denial-of-service, mes-
sage spoo�ng, and authentication bypassing. The majority
stem from missed access-control checks and incorrect in-
put sanitation. For example, a missed authorization check in
/api/v1/users/find_teams allowed attackers to view the

2The data we collected for this evaluation can be found in h�ps://bitbucket.
org/datsplatform/security-evaluation.

invite link for any team on the system, provided that they
knew the email of any user on the team.
We also examined the 13 CVEs (9 preventable by DATS)

disclosed for Gitlab and discovered similar vulnerabilities.
For example, Gitlab improperly sanitizes public keys up-
loaded by users before operating with them, allowing attack-
ers to execute arbitrary code on a Gitlab server [7].
DATS prevents these improper data disclosures because

each application instance is con�ned to its own folder, and
user authorization is centralized in the TCB. Vulnerabilities
can appear in application code, but also in the large stacks
of third-party code used by web applications. In total, 402
CVEs have been reported for the stacks of the applications
found here, of which 237 would be prevented by DATS.
Interestingly, DATS is also able to contain app-layer de-

nial of service (DOS) attacks; we can apply per-container
resource limits (e.g., using cgroups in Linux) to contain at-
tacks to a per-user and folder instance. For example, incorrect
sanitization in large �le uploads allowed for a server-side
DOS attack in Mattermost, consuming too much memory
within the application. Similar attacks can also be seen in
the CVEs for the applications and stacks in Table 2.

7 Performance Evaluation
We built DATS using two container technologies and show
that HW-assisted containers improve performance. We �nd
that DATS provides reasonable performance for the major-
ity of application operations (per-folder requests) and good

https://bitbucket.org/datsplatform/security-evaluation
https://bitbucket.org/datsplatform/security-evaluation


scalability for cross-folder operations (albeit with a �xed
latency cost due to multi-execution § 7.1.2). For worst case
operations (searching across all folders), a naive implemen-
tation introduces overheads of 70⇥ (13 secs) while hardware
assisted solutions brings this down to 1.47⇥ (47 msecs).
All experiments use an Intel Core i7-4770 (4 cores 2-way

SMT @ 3.40GHz), 12 GB DDR3, an Intel 82574L NIC (1 Gbit),
a Seagate ST3500413AS disk (500GB, 7200 rpm, 16MB cache)
and Ubuntu server 14.04 LTS.
7.1 Existing Container Technologies
Container latency is encountered when creating containers,
starting applications inside containers, and destroying con-
tainers. Starting an LXC or SELinux container along with
the application inside ranges from about 1second (e.g., DATS
Health) to tens of seconds (e.g., Mattermost). The Container
Manager maintains a pool of free containers and prefetches
them, hence none of these operations are on the critical path.
7.1.1 Per-Folder Throughput and Latency
We measured the average throughput and latency for a per-
folder request to DATS Health (§ 5.2) with varying number
of clients – using a low-overhead query to access a single
encounter to focus on DATS’s overheads. The baseline appli-
cation (one process per client) is compared against a version
running in DATS using either the LXC or SELinux backends,
both with and without a shared MongoDB storage service.

We �nd that all experiments have a pareto-optimal point at
8 clients, with latency overhead of 3⇥ (10msec) and through-
put overhead of 66% (1000 req/sec). DATS’s scaling is limited
due to its Proxy component since it routes all requests to
app containers – a dynamic reverse proxy (for client authen-
tication and routing to the target container) would greatly
improve latency, contacting the Proxy only when a cross-
folder operation is triggered. Throughput would improve by
moving reference counting (now serialized in Redis) to a dis-
tributed algorithm with batched lazy releases. Latency and
throughput would also improve with simple page caching.
7.1.2 Cross-Folder Throughput and Latency
We also measured the latency of a worst-case cross-folder
request with an increasing number of folders (same con�gu-
rations and disabling the JSON result caching from § 4).

DATS shows a base overhead of 30⇥ (from 0.01 to 0.3 sec la-
tency) due to container-agnostic factors: (1) the latency over-
heads in § 7.1.1; (2) the additional redirects for cross-folder
views (§ 3.4); and (3) a sub-optimal Template Declassi�er
using Python libraries. The folder count has a small linear in-
crease in latency overheads (up to 1 sec for 50 folders). This is
inherent to the multi-execution of existing containers (each
per-folder request needs a separate process), and storage
consolidation shows a slight improvement on that.
DATS thus has reasonable folder scalability — container

reuse and prefetching and running per-folder requests in
parallel e�ectively hides costs. The base overhead can be
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Figure 6. Performance of a cross-folder operation with hardware-
accelerated thread containers, normalized to the performance of an
unsecure shared library. The Y-axis shows the normalized number
of non-isolated threads while the X-axis shows the processing work
on each folder. The unsecure baseline goes from 47 to 13,721msec,
and generating a cross-folder result for § 7.1.2 corresponds to the thin
vertical line.

eliminated using known optimizations (§ 7.1.1) and a faster
Template Declassi�er implementation.
7.1.3 Cross-Folder Storage Declassi�er
We also analyzed the latency overheads of using a Storage
Declassi�er with our deduplication storage (§ 4). The de-
classi�er adds a 2⇥ and 3⇥ latency overhead for get and put
operations, respectively. This is expected given our simple
prototype (150 LOC of Python), but shows ease of implemen-
tation. More e�ciency is possible through data blocking and
using Merkle trees [62] for integrity checking.
7.2 Hardware-Accelerated Containers
Cross-folder operations are critical in DATS and existing
container technologies bring intrinsic overheads: the multi-
execution of per-folder processes [26] and copying data
across them. We �nd that hardware-accelerated thread con-
tainers (§§ 3.3 and 4.1) help eliminate these overheads while
even existing containerization technologies have negligible
overheads for large application workloads.
Figure 6 shows the performance of a cross-folder opera-

tion with 800 folders using 8 threads.The X-axis shows the
workload necessary to make overheads negligible — each
request calculates the factorial of the X-axis number (stored
in a per-folder �le, opened and closed on each request). The
Y-axis is normalized to the regular non-isolated threads. We
ran the experiments natively, using the same methodology
of previous studies with CODOMs [67]3.

Secure baseline shows the most e�cient existing con-
tainer technology with perfect Proxy scalability and SELinux
label prefetching, where app and Proxy communicate through
a pipe. Slowdowns range frommore than 70x to 1.47x. Ported

3Capability operations are emulated using regular memory accesses, and
hardware registers are emulated using thread-local variables.



applications see the highest overhead; the workload in § 7.1.2
corresponds to the vertical line in Figure 6.

Thread container (replicated) shows the costs of run-
ning a thread container with a regular app instance; the
Proxy uses dlopen/dlclose when entering/exiting the con-
tainer, respectively. The slowdowns are drastically reduced
to 12.25x–1.01x because of less expensive thread containers
and by avoiding copies between the Proxy and the app.

Thread container (replicated, preloaded) decouples the
multi-execution overheads from library management by opti-
mistically preloading all app instances and never unloading
them. Slowdowns are 3.76x–1.01x, since multi-execution
still a�ects performance; having multiple virtual copies of
a library does not allow optimal sharing of read-only and
micro-architectural state.

Thread container (shared) shows the best results by
sharing a single read-only app instance across thread contain-
ers. It removes the overheads of multi-execution and manag-
ing per-container library instances, reducing slowdowns to
3.65x–0.98x, but global writable data must be replaced with
dynamic allocations.
Thus, hardware-acceleration reduces overheads from

70x to 3.65x (worst) to within measurement noise (best).

8 Related Work
Hardware-assisted reference monitors (e.g., Intel MPX, SGX)
[22, 40], capability-based [42, 66, 69, 70], information �ow
tracking [31, 43, 77], and other systems [73] can be used
to implement containers. On the client side, data-con�ned
sandboxes and IFC [21, 61] can improve DATS’s security
guarantees and template �exibility. Veri�able SQL queries
such as IntegriDB [79] can be integrated as Storage Declassi-
�ers, moving SQL DBs outside the TCB.

PL-level IFC solutions (Jeeves [74], Fabric [47], Aeolus [30],
Jif [58]) allow for dynamic, �ne-grained IFC abilities, but of-
ten require developers to understand information �ow poli-
cies or limit choices to supported languages. These solutions
are good candidates for writing DATS trusted components.
Other solutions segment data and applications along the

user axis. Radiatus [29] runs applications inside user con-
tainers – collaborative containers will require DATS-like
templates and a Storage Declassi�er . Radiatus’s capability
protocol requires applications to be ported to access per-user
data, similar to our API. It also trusts third-party storage
services to maintain data separation between per-user pri-
vacy domains. Similarly, CLAMP [53] replicates a WebStack
per-user with two security-critical pieces: a query restrictor
(which guards a database) and a dispatcher (which authenti-
cates the user). CLAMP does not enable controlled sharing of
user data with untrusted code. �Box [44] containerizes per-
user applications and uses a di�erential privacy declassi�er
for ad-impressions.

Lastly, similar solutions provide segmentation at the data-
object level. Hails [38] lets developers associate access con-
trol policies to the model, while replicating view and con-
troller components for each security label. Applications are
written in Haskell and developers have to label their models
(or platform administrators have to understand each appli-
cation’s models), and cross-label (i.e., cross-folder) views or
storage services like deduplication will require extending
Hails with our robust declassi�ers.
Earp [72] allows users to share app-speci�c data objects

(e.g., a custom animation inside an album) but requires de-
velopers to implement schema-level permissions (like Hails’
MPVC framework). DATS’s model is more appropriate when
users wish to run multiple apps for data with identical access
controls (e.g., messages, photos, and docs in a project).

Secure multi-execution [33] provides non-interfering data
containers for client-side code (one process per container, al-
though faceted execution can relax that [24]). Self-protecting
data [28] uses hardware IFC and a security policy component
that does not protect against implicit information �ows.

Maxoid [71] allows an app to give its sensitive data to an
untrusted app while con�ning the untrusted app to not fur-
ther leak the data. This functionality is equivalent to DATS’s
app component and similar to Hails plugins.

The IFC approaches above implement containers in di�er-
ent ways. DATS’s declassi�cation is applicable to all – it will
safely remove declassi�able functionality from applications’
TCB – while IFC can be applied to DATS’s TCB itself.

9 Conclusions
DATS places applications out of the TCB while presenting
a familiar security-oblivious programming model to devel-
opers. Extracting out access control from web services and
enforcing it as a service is a major departure from current
application-centric security models, but this is only one
step forward towards placing users in control over their
data. DATS motivates focusing language support for non-
interference speci�cally towards template languages and
architecture/OS support for multi-execution. In its current
state, DATS is evidence that user privacy and developer pro-
ductivity are not a zero-sum game.
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