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Abstract—We describe the first hardware implementation
of a quantum-secure encryption scheme along with its low-
cost power side-channel countermeasures. The encryption uses
an implementation-friendly Binary-Ring-Learning-with-Errors (B-
RLWE) problem with binary errors that can be efficiently generated
in hardware. We demonstrate that a direct implementation of B-
RLWE exhibits vulnerability to power side-channel attacks, even to
Simple Power Analysis, due to the nature of binary coefficients. We
mitigate this vulnerability with a redundant addition and memory
update. To further protect against Differential Power Analysis
(DPA), we use a B-RLWE specific opportunity to construct a
lightweight yet effective countermeasure based on randomization of
intermediate states and masked threshold decoding. On a SAKURA-
G FPGA board, we show that our method increases the required
number of measurements for DPA attacks by 40× compared to
unprotected design. Our results also quantify the trade-off between
side-channel security and hardware area-cost of B-RLWE.

I. INTRODUCTION

Public-key encryption schemes using lattice problems enable
quantum-secure alternatives of existing systems. Among lattice-
based solutions, proposals relying on Ring-Learning-with-Errors
(RLWE) problem [1] have been popular for their efficiency
in hardware [2–5] and software [2, 6–8] implementations. A
variant of RLWE, binary-RLWE (B-RLWE) [9], has recently
been proposed providing even more efficient constructions due
to its elimination of costly Gaussian samplings, reduction of
operand sizes, and simplification of modular reduction. B-RLWE
instead works with a smaller collection of bits sampled from
a uniform distribution while achieving sufficient security levels
against conventional [9, 10] and quantum [11] cryptanalysis.

Although lattice-based public-key schemes have theoretical
guarantees against powerful quantum adversaries, their imple-
mentation can be vulnerable against physical attacks. Indeed,
power-based side-channel attacks have been applied thoroughly
for traditional public-key encryption algorithms like elliptic curve
cryptosystems (ECC) [12]. These attacks extract secret keys by
analyzing correlations between secret key values and power con-
sumption of a target device. To that end, Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) are common and
powerful threats that can extract keys from small correlations by
evaluating several measurements with statistical methods.

Prior work on side-channel analysis of lattice-based pubic-
key encryption focuses on RLWE or software specific attributes
[13–18]. Saarinen et al. formulated possible blinding counter-
measures for the Gaussian sampling and Number Theoretic
Transform (NTT) of RLWE [13]. Reparaz et al. implemented
two countermeasures, first based on arithmetic masking with a
random key split [14], and second based on ciphertext-blinding
by utilizing RLWE’s additive homomorphism [15]. Oder et al.
adapted a combination of these methods for an adaptive chosen-
ciphertext-attack-secure (CCA-2) variant of RLWE [16]. Park
et al. mounted an attack on RLWE implementation exploiting

a modular addition vulnerability that occurs when RLWE is
specifically implemented on 8-bit micro-controllers [17]. Most
recently, Primas et al. showed a template attack on a software
implementation of NTT that exploits a multitude of side-channels
including a vulnerability of division instruction (DIV) on ARM
Cortex-M4 [18].

Side-channel analysis of B-RLWE is different from RLWE as
parts of the secret key (coefficients of the secret-key polynomial)
are drawn from a binary distribution and thus have only two
possible values: ‘0’ or ‘1’. RLWE keys, however, are sampled
from a larger set with a Gaussian distribution. Unfortunately,
unlike RLWE, side-channel analysis of B-RLWE scheme has not
been evaluated so far—this analysis is crucial for embedded de-
ployment of B-RLWE since unprotected implementations will be
vulnerable to such attacks. There is also no hardware realization
of B-RLWE: the only existing work is a software implementation
for Atmel-AVR and ARM-Cortex-M0 microcontrollers [19].

This paper presents the first B-RLWE hardware along with
low-cost power side-channel countermeasures. We analyze the
effect of B-RLWE operations for side-channel attacks and uti-
lize a B-RLWE specific opportunity to design a low-cost DPA
countermeasure. Specifically, we show that B-RLWE polyno-
mial multiplication leaks information through partial product
generation and intermediate sum update. While partial product
generation causes SPA leaks, when it is mitigated, values of
intermediate sum update become vulnerable to DPA attacks,
which can be protected by its random initialization and masking.
We evaluate the cost and efficiency of SPA and DPA attacks and
countermeasures on a physical platform with real measurements.
Compared to prior work, we claim the following 3 contributions.

1. A Novel SPA Attack and Countermeasure for B-RLWE.
We describe a simple and effective SPA attack that becomes pos-
sible on B-RLWE. This attack can recover the secret key with a
few power measurements due to binary coefficients of B-RLWE.
We then propose an SPA countermeasure that uses always-add-
with-redundant-store method to normalize power consumption.

2. Novel DPA Attacks and Countermeasure for B-RLWE.
We develop novel DPA attacks that can break an SPA-secure
B-RLWE implementation. Notably, these attacks can work for
an adversary that has no knowledge on the secret key and can
reduce the secret-key search-space from 2n to only 2 options.
We also provide a novel and efficient countermeasure via random
initialization and masking that is secure against (first-order) DPA.

3. First Hardware Implementations. We design efficient
hardware implementations of B-RLWE decryption. We provide
two baseline designs for (i) low-area and (ii) high-performance
applications, which are respectively the smallest and fastest
lattice-based public-key decryptions to date. We extend the low-
area design to apply proposed defenses and quantify their cost.



KeyGen
r1, r2 ← Rq

p=r1−a·r2

Key generation samples the secret key r2 and
polynomial r1 with binary coefficients, and pro-
duces public key p. a is a global, public system
parameter. r1 can be discarded after this step.

Enc
e1, e2, e3 ← Rq

c1 =a·e1+e2
c2 =p·e1+e3+m̃

Encryption generates the ciphertext c1, c2 from
message m by using public key p and by adding
error nonces e1, e2, e3 sampled with binary co-
efficients. The input message m, which is an n-
bit binary string, is expanded to the polynomial
m̃ by multiplying each coefficient with q/2 and
adding q + n/2 − 1 − i, where i is the degree
associated with the coefficient.

Dec
m= th(c1 ·r2+c2)

Decryption reconstructs the message m by us-
ing the secret key r2. The threshold decoder
th(.) processes each coefficient separately and
it returns a binary value ‘1’ if c[i] lies in the
range (q/4, 3q/4), else it returns ‘0’.

Fig. 1. B-RLWE public-key encryption scheme

II. B-RLWE PUBLIC-KEY ENCRYPTION SCHEME

B-RLWE1 is a new, promising variant of RLWE that achieves
smaller key sizes and more efficient computations [9]. The
security analysis of B-RLWE is corroborated by several authors
[10, 11, 20]. This section first provides a background on B-
RLWE and introduces the public-key encryption scheme. We
then highlight the difference of B-RLWE from RLWE and give
a high-level motivation for its impact on power side-channels.

All Latin letters such as ri, ci, c express polynomials, unless
stated otherwise. The letter m indicates a binary string, and i, n,
and q denotes an integer. The operations +,−, · respectively cor-
responds to polynomial addition, subtraction, and multiplication,
if they operate with polynomials. The symbol← shows sampling
a polynomial with binary coefficients and ⊕ is an XOR operation.
We use c[i] to represent a specific coefficient of polynomial c with
the degree i. To display multiple coefficients of a polynomial c
in a single notation, we use c = [c[i] c[i−1]].

B-RLWE uses the ring Rq=Zq[x]/〈xn+1〉, where an element
inside this ring is a polynomial of degree n−1 with integer
coefficients modulo q. The operations defined in this ring are
polynomial addition, polynomial subtraction, and polynomial
multiplication. The polynomial addition and subtraction is simply
applying a coefficient-wise, modular addition and subtraction
operations, respectively. Polynomial multiplication generates a
2n−2 degree polynomial which is converted back to a polyno-
mial of degree n−1 with the reduction function of f(x)=xn+1.

The B-RLWE public-key encryption scheme consists of three
parts: Key Generation (KeyGen), Encryption (Enc), and De-
cryption (Dec). Note that, while encryption operates with public
or ephemeral values, decryption uses the long-term secret key
and thus is the target of side-channel attacks. Therefore, we im-
plement and analyze the side-channel security of the decryption
process. Figure 1 summarizes the B-RLWE scheme.

For the scope of this paper, we use the parameter set-II in [19],
which achieves a relatively lower decoding failure probability of
2−32, a security level of 84-bits (88-bits according to Wunderer
[10]) against conventional computers, and a security level of 73-
bits [11] against quantum computers. Since we target lightweight

1To emphasize its binary aspect, we refer the scheme as binary-ring-learning-
with-errors, and abbreviate it as B-RLWE. We do not cover CCA-2 security of
the scheme and refer interested readers to [16] for possible CCA-2 extensions.

Fig. 2. (a) B-RLWE vs. (b) RLWE decryption example. Note the difference in
secret key r2; while B-RLWE works with binary coefficients, RLWE samples
them from Gaussian distribution, which, for the example, is between 0 and 255.

applications (eg. constrained IoT nodes) where typical security
level is 80-bits (eg. [21]), these security levels suffice for our case.
The target configuration sets n=256 and q=256; it works with
polynomials degree 255 and with coefficients modulo 256. The
same 8-bit arithmetic we analyze supports 190-bit security level
so our side-channel analysis covers B-RLWE instantiations of
higher security. Note that these parameters are smaller than state-
of-the-art RLWE settings [22], which is favorable for lightweight
applications. But they do not, by default, allow a Number
Theoretic Transform (NTT) based polynomial multiplication. The
parameters, however, may be tweaked to enable NTT for trading
off area for performance; such optimizations and their side-
channel analysis are out of scope of this work.

Figure 2 illustrates a decryption example for B-RLWE and
RLWE. For simplicity, the example uses the same toy setting
n=4 and q=256 both for B-RLWE and RLWE. The figure shows
the multiplication of c1·r2 with in-place reductions. Each row
of multiplication shows the product of a single r2 coefficient
with all coefficients of c1; we refer to this method as row-
wise multiplication. The in-place reduction is a (modulo 256)
sign change of the reduced coefficient. Result of polynomial
multiplication is the addition of all row-wise computations. In
practice, this occurs in a row-first manner by computing a row of
partial products and by adding them to the intermediate sum that
holds the result of previous row. The polynomial multiplication
thus has an accumulative nature; intermediate sum values at each
row depend on all previous rows, which will later in Section III-C
play a key role in DPA attacks.

The main difference of B-RLWE vs. RLWE decryption is
the secret-key polynomial r2 of B-RLWE sampled with binary
coefficients. Hence, polynomial multiplication of B-RLWE is a
sequence of additions. If key bit r2[i] is equal to ‘0’, no partial
products are generated and intermediate sum keeps its value
(third row in the example). Else, partial products (ie. coefficients
of c1) are added into the intermediate sum. Although being more
efficient, this causes SPA leak as we discuss in Section III-B.

III. SIDE-CHANNEL ANALYSIS OF B-RLWE HARDWARE
A. Area-optimized Hardware Design

Parallelization choice of polynomial multiplication derives the
hardware design of B-RLWE. Since we primarily focus on
lightweight applications, we design and analyze coefficient-serial



Fig. 3. Hardware architecture of B-RLWE including side-channel defenses

architectures that compute a single coefficient of a single row of
multiplication in a clock cycle. This design uses one adder as its
main processing unit. Therefore, it takes n cycles to compute one
row of polynomial multiplication and n × n cycles to compute
the entire operation. Figure 3 demonstrates the details of the
hardware architecture for lightweight B-RLWE decryption. This
figure shows our baseline architecture and also highlights the
side-channel security defenses in the same diagram. Section III-B
and III-C elaborate SPA and DPA defense, respectively.

The main processing unit of the architecture is the 8-bit adder
that first computes the polynomial multiplication and later the
polynomial addition. Since the modular reduction q is set to 256,
it is simply cutting off the most significant bit of the sum (the
9-bit adder output is truncated into 8-bits). The sign change for
in-place reduction is handled by subtracting c1[i] from q and
either, c1[i], in-placed c1[i], or c2[i] is selected as the input of
the adder. The second input of the adder is the output of memory
that stores intermediate sum. In the baseline design, threshold
decoding is simple: the output m is generated by XORing the
most significant two bits of the coefficients after adding c1.

B. SPA Attack and Countermeasure of B-RLWE
The switching activity is reduced if r2[i] is ‘0’ because addition

and memory update will not occur by default. An SPA attack can
thus extract the secret key with a few measurements by interpret-
ing differences in power traces caused by these operations.

To normalize the power activity, we introduce the “always-add-
with-redundant-store” method that always computes the addition
of coefficients and performs a memory update. Figure 3 demon-
strates the architecture of this datapath. For SPA security, our
architecture is designed with two key insights: (1) Adder will
always, ie. independent of the key value, compute the partial
product and (2) if the key is ‘0’, the result will be stored in
a redundant memory (SPA Mem in Figure 3). To minimize
the power variance, this redundant memory is forced to be
placed within the same memory block (BRAM) that holds the
intermediate sums, ie. they are separated with address space.
Therefore, regardless of the value of r2[i], there is always an
addition and memory write that takes place in the SPA-resistant
architecture, preventing variances exploited by SPA in the power-
trace caused by inactivity. Section V-A evaluates the effectiveness
of our SPA defense. Our countermeasure may be vulnerable to
EM or photonic attacks but they are out of scope of this work.

C. DPA Attack and Countermeasure of B-RLWE

DPA can exploit small power correlations to key by using a
statistical analysis on a sufficiently large number of power traces,
and break a design that has SPA countermeasure.

1) Attacking SPA-secure Executions with DPA: Due to the
accumulative nature of B-RLWE polynomial multiplication, the
computation carried out at a certain row depends on the current

TABLE I
DPA ATTACK INTUITION FOR SPA-SECURE CIRCUIT. VALUE OF r2[i− 1]

CORRELATES WITH POWER CONSUMPTION AT ROW i

Attacking first row Attacking second row
(r2[0]) (r2[1],r2[0])

r2[i] 0 1 00 01 10 11

Adder
Operation 0 → 30 0 → 30 0 → 20 30 → 50 0 → 20 30 → 50

key bit and all the previous key bits that have been used in the
multiplication. For example, the result of the second row, depends
on the first key bit (r2[0]) and the second key bit (r2[1]). The
crux of our DPA attack is to exploit this notion: a different key
history will lead to a different computation. Using this attack, the
adversary, starting from the first bit, can subsequently recover the
entire secret key.

Table I visualizes the intuition behind the proposed DPA
attack, which details an attack to the toy example in Figure 2 with
c1=[30 20 150 80] and r2=[1 0 1 1]. Let the DPA adversary target
the computation of mult[3], which denotes the most significant
byte of the intermediate sum of polynomial multiplication. Recall
that, due to the SPA countermeasure, the intermediate sum’s
accumulation by c1[i] will occur regardless of the key r2[i] value.

Attacking the first row of computations fails since regardless
of the value of r2[0] the hardware will compute 30=0+30.
Therefore, SPA defense will also protect against the attack that
targets computations in the first row. However, by attacking
the second row of polynomial multiplication, the adversary can
extract the value of the first bit of secret key (ie. r2[0]). This is
possible because the computation that takes place in the second
row depends on previous bit due to the accumulative nature
of the computation—even though SPA countermeasure makes it
independent of the current key value. For the example, if r2[0] is
‘1’, the datapath will compute 50=30+20, else, if r2[0] is ‘0’, the
datapath computes 20=0+20. Thus, the adversary can effectively
execute a differential attack; it can apply a random input to the
decryption, make a hypothesis on an intermediate sum from input
value and key guesses, and check those hypothesis through the
power trace. This attack will recover the value of each key bit,
starting from r2[0], and it can successively recover consecutive
bits of the key. For example, after recovering r2[0], the attacker
can target the computations of the third row and extract r2[1].
When this DPA attack completes; only 2 key candidates remain
depending if r2[n−1]=0 or r2[n−1]=1. The brute force search
space will thus reduce from 2n to 2 options.

The proposed DPA attack extracts the secret key by making
and testing hypothesis on a single intermediate computation,
which is typically referred to as first-order DPA attacks.

2) Novel DPA countermeasure with Random Initialization and
Masking: We propose a novel first-order DPA countermeasure
for B-RLWE decryption based on random initialization and a
masked threshold decoder. Our approach is to initialize the
intermediate sum with a random value at the start of each
decryption process and to recover from the effect of this random
value at the final step using a masked threshold decoder. Figure 4
illustrates this method and shows its effect on the same example
used in Figure 2. Since polynomial operations have additive
homomorphism, the initialized random values will be preserved
right before the threshold decoder (ie. each coefficient is shifted
by a fixed, random amount). However, simply subtracting the ran-
dom numbers before the threshold may allow a DPA-adversary



Fig. 4. Example of random initialization with masked threshold decoder.

to correlate against the output values; DPA defenses remove all
correlations between intermediate computations and the key. The
masked threshold decoder takes random initialization, shifted
result, and a random bit as input for each coefficient to generate
two bits m′ and m′′ such that m = m′ ⊕ m′′. Since it uses a
random bit for each new execution, the masked threshold decoder
successfully de-correlates the final operation from the secret key.
The masked threshold decoder can be realized with a 128K×2
ROM. If the final XOR is applied on the two output shares m′

and m′′, the proposed method would be functionally equivalent
to an unmasked threshold decoder. Hence, our method does not
increase the error rate of thresholding. Attacks on intermediate
coefficients of r2 ∗ c1 before adding them to accumulator is also
not possible for two reasons. First, due to SPA defense, c1 co-
efficients are always loaded and added. Second, the intermediate
values change for each execution (due to random initialization),
hence adversary cannot build accurate hypothesis.

Figure 3 shows the implementation of our DPA defense. We
used a PRNG based on TRIVIUM [23] to optimize area, which is
also used in previous lightweight lattice-based implementations
[4]. Any cryptographically secure PRNG can be used; this
selection has no impact on our side-channel analysis. PRNG
supplies random bits to initialize memory contents that store
intermediate sum (both real and redundant memory) and to apply
masked threshold decoder. The initialized values are also stored
in a memory (Rand. Init., Figure 3) to be later used in the
masked threshold decoder.

3) Comparison of Proposed Countermeasure with Prior Meth-
ods: Our DPA countermeasure has a lower execution-time over-
head compared to previous masked solutions applied for RLWE
[14], [16]. Both of these schemes perform random splitting: the
key is split into two random shares and each share is computed
separately, thus doubling the cycle count. In contrast, the cycle
count overhead of our method is much smaller (< 4%), which
is the time it takes to generate random numbers to properly
initialize the memory. We also do not opt for the threshold
decoder proposed in [14] for several reasons. First, it reduces
the reliability of decryption. Second, it further increases the

TABLE II
COMPARISON WITH PREVIOUS LWE-BASED DECRYPTION HARDWARE

Reference SCRa LUT/FF/SLICE BRAM
/DSP

Cycles MHz Op/s Device

[25]b 7 63/58/32 13/1 32768 144 4395 S6LX45

[2] 7 124158/65174/- - - - - V6LX240T

[5] 7 4549/3624/1506 12/1 4404 262 59492 V6LX75T

[4] 7 94/87/32 1/1 66338 189 2849 S6LX9

[3] 7 1349/860/- 2/1 2800 313 109890 V6LX75T

[14] 3 2014/959/- 2/1 7500 100 13333 XC2VP7

Our High-perf. 7 6728/6813/1874 0/0 262 101 385496 S6LX75

Our Low-area 7 57/30/19 2/0 65797 135 2051 S6LX75
Our Low-area

+SPA 3 58/30/22 2/0 65797 133 2021 S6LX75

Our Low-area
+SPA+DPA 3 115/78/38 21/0 68105 119 1747 S6LX75

a Side-channel resistance
b Howe et al. uses standard lattices instead of ideals, hence they implement

LWE decryption instead of RLWE

execution time. Third, it may be vulnerable to horizontal DPA
attacks. Moreover, the operand size of B-RLWE is 8-bits, thus a
straightforward threshold decoder with a table lookup occupies
relatively smaller area. The DPA-resistance approach of [15]
drastically reduces the reliability because the decryption has to
correct the aggregated errors of two encryptions. Moreover, it
also enforces a decryption system to include overheads of a full
encryption module. Our method does not have these drawbacks.

4) Higher-order DPA Attacks: Higher-order DPA attacks can
break systems that are protected with lower-order masking. We
describe a second-order DPA attack to our first-order DPA
defense (Sec. V-B3 shows results). The goal of this attack is
to negate the effect of random initialization by picking two
points in the power trace and by combining these two points
to make direct correlations to the secret key value. The proposed
attack uses absolute-difference based combination [24], which
exploits the correlation of Hamming weight (HW ) of absolute
differences (HW (a)∼|HW (a+r mod256)−HW (r)|), to corre-
late directly to the target value. To achieve this attack, adversary
correlates against the combination of random numbers generated
by the PRNG (HW (r)) and the random intermediate addition
HW (a+r mod256). Second-order DPA-adversary thus applies
the first-order DPA attack method on the two combined points.

IV. IMPLEMENTATION COST OF B-RLWE HARDWARE

The hardware architectures we propose are implemented in
Verilog HDL and mapped on to the Xillinx Spartan-6 XC6SLX75
FPGA. The synthesis, placement, and routing of the proposed
designs to the target FPGA is performed using Xilinx Integrated
Synthesis Environment (ISE) version 14.6.

Due to different optimization goals, automation tools, and
target FPGA device, a fair comparison among different hardware
architectures is difficult make purely on the basis of technology.
Moreover, different parameters used in RLWE implementations,
which may also result in different pre/post-quantum security lev-
els and decoding failure rates, complicates this task. Nevertheless,
we list previous RLWE implementations in addition to reporting
our results to provide a first-order comparison. To give an essence
of the design space of B-RLWE, we also implement a baseline
parallel architecture that uses 256 adders, which can compute a
complete row of partial products in one clock cycle. This design
also follows a row-first polynomial multiplication.

Table II reflects the potential of B-RLWE as a promising
alternative for post-quantum public-key scheme. The baseline



Fig. 5. Difference-of-means based SPA-resistance tests without (a) and with (b)
the SPA countermeasure. Figures show the evolution of the difference-of-means
at the maximum leak point for 150000 traces. Dashed lines mark the confidence
interval for difference-of-means equal to 0 with 99.99%. In the baseline design
(a), starting from 200 traces, the attack can successfully estimate the correct guess
with a confidence of 99.99%. After applying the SPA countermeasure (b), the
SPA leak is mitigated even after 150000 measurements. This test is applied on
r2[2] when r2[1] and r2[0] is fixed to ‘1’ and ‘0’, respectively.

low-area architecture, which does not incorporate side-channel
defenses, is the smallest lattice-based hardware implementation
to date. This design reduces the slice cost and does not use a DSP
macro. Likewise, the baseline high-performance architecture is
the fastest lattice-based public-key decryption to date. The SPA
defense increases the slice count by 15% and the DPA defense
(including PRNG), increases the slice count by 200%. The major
cost of the DPA defense is the increase in the number of
BRAM. However, even with the included side-channel defenses,
our architectures are still relatively small. Recall that we target
lightweight applications hence the parameters are set to n = 256
and q = 256, providing 80-bits of security. By setting n = 512,
B-RLWE instantiation can achieve higher security levels at the
expense of quadrupling the execution time.

V. EVALUATION OF SIDE-CHANNEL ATTACK RESISTANCE

To evaluate the power attacks on a real environment, we
mapped our implementations on the SAKURA-G board, which
includes a Xilinx Spartan-6 (XC6SLX75-2CSG484C) FPGA. We
measure the voltage drop on a 1-Ω resistance and make use
of the on-board amplifiers on the SAKURA-G platform. The
measurements are taken with a low-end digital USB oscilloscope
(PicoScope 2204A) that can sample at 20 ns intervals (50 MS/s).
The design is clocked at a constant 1.5 MHz operating frequency.

A. Testing SPA Resistance
To evaluate SPA-resistance, we perform a difference-of-means

test [26] on the baseline and SPA-resistant design. This test
aims to differentiate two sets—measurements taken when a
particular key bit is equal to ‘1’ vs ‘0’—by comparing their
means separately for each point in the mean power trace. Figure 5
reflects the outcome of this test for up to 150000 measurements.
The results validates our SPA countermeasure: At the maximum
leak point (ie, at the point where maximum difference occurs in
time), while the baseline design shows a large difference in the
mean power consumption for two different key values, this effect
is mitigated in the SPA-resistant design.

B. Testing DPA Resistance
To evaluate DPA-resistance, we follow the methodology pre-

sented in [14] that applies a three-pronged test and uses the
same Pearson correlation in the DPA attack [27]. We target both
the input and output registers of the adders (ie. intermediates
before and after addition) and make hypothesis based on the
Hamming distance of register values. Our security model, similar
to previous work, assumes that DPA adversary knows details
of hardware like data-flow, parallelization choice, and pipelines.

Fig. 6. First-order DPA attack while the masks turned off. This attack makes
hypothesis on intermediate computation mult[3] where mult = c1 ·r2. The top
trace, depicted in blue, shows the mean power consumption of the FPGA at each
evaluation time. In the middle, green trace presents the correlation of correct
guess which leaks the value of the key bit r2[0] at the expected time interval. At
the bottom, the red trace displays the correlation of wrong guess; no correlations
are observed. Dashed lines mark the confidence interval of ρ = 0 with 99.99%.

Adversary can therefore estimate when the targeted computation
will likely occur and apply the attack around those clock cycles.
We test the capability of a real adversary that has no a priori
knowledge of the key. In contrast, previous attack evaluations
either assume that adversary knows all key segments except the
targeted one [14], [15], or assesses a lower bound on the potential
of risk [16] via the non-specific t-test [28].

1) DPA with PRNG off: We first test the effectiveness of
first-order DPA attack by turning off the PRNG in the masked
architecture. After this deactivation, PRNG keeps a constant
output value of ‘0’. Therefore, the DPA security of the design
will be equivalent to an unmasked, baseline implementation.
Figure 6 illustrates the result of DPA attack using 15000 traces.
Figure shows the first 15 clock cycles of execution during the
second row of polynomial multiplication. DPA attack targets the
intermediate value of mult[3]; it will make a hypothesis on the
fourth coefficient of intermediate sum, based on the value of key
bits (r2[i−1]), starting from r2[0]. Recall that, as we described in
Section III-C, the two hypothesis r2[i− 1]=0 and r2[i− 1]=1
will generate different switching activity and DPA attack can
check which of these hypothesis correlates with real power
measurements. The selection of mult[3] is not special, the same
attack works using any other coefficient, of course, by building
accurate intermediate guesses for that target coefficient. Results
validate the DPA vulnerability. There is indeed a significant
correlation for the correct guess occurring at the expected clock
cycle, which is statistically sufficient to extract the correct guess
with over 99.99% confidence. On the other hand, correlation with
incorrect key guess is within the bounds of confidence interval,
which demonstrates that, statistically, there is no correlation for
the incorrect key guess.

Figure 7 (a) presents the change in the maximum correlation
for both correct guess and wrong guess, which is useful to asses
how many traces are needed for DPA to succeed with the target
confidence. After 2000 traces, the correlation of correct key guess
exceeds the confidence interval, while incorrect key guess is
always within its bounds. Therefore, this value puts an upper
limit on first-order DPA-resistance of the entire system. The
figure reflects the attack to the first two bits and demonstrates its
extraction within a window of 15 clock cycles. By focusing on
other parts of the same power trace (eg. third-row computations)
the adversary can successively recover all bits of the key.

2) DPA with PRNG on: After verifying the DPA-vulnerability,
we activate the PRNG and repeat the same process. This attack



Fig. 7. DPA resilience evaluation using (a) first-order attack on the baseline design, (b) first-order attack on the masked design, and (c) second-order attack on the
masked design. Results show the evolution of the correlation coefficient ρ at the maximum leak point, note the increase in number of measurements for (b) and (c).
Dashed lines mark the confidence interval of ρ = 0 with 99.99%; DPA attack succeeds if correlation crosses this threshold for the correct key guess. Starting from
2000 traces in (a), DPA estimates the correct key. In (b), even after 150000 traces, DPA fails. In (c), starting from 80000 traces, DPA estimates the correct key.

shall not succeed if the DPA defense is sound. Since we cannot
prove the non-existence of first-order leaks, we empirically
validate, by using 150000 traces, if there is a meaningful
correlation for both guesses. Figure 7 (b) displays the result
of this experiment. As expected, random initialization and the
masked threshold decoder prevents first-order DPA attacks. There
is indeed no first-order DPA leak as the correlation of both key
guesses converge to 0.

3) Second-order DPA with PRNG on: Finally, we test the
success of our second-order attack—see section III-C4 for the
description of the attack. This process also verifies if the number
of traces used in first-order attack is sufficient. Figure 7 (c)
shows the result of second-order DPA attack. The correlation
of correct key guess is lower than the first-order DPA thus
it requires more traces to break the system with the same
confidence. Therefore, using approximately 80000 traces, which
is substantially more than first-order DPA, second-order attacks
can still succeed with 99.99% confidence. Note that we make
a strong assumption on the second-order DPA adversary: it can
predict the two fixed points in time causing leaks and combine
them. In practice, first-order defenses are typically implemented
with methods that circumvent this prediction such as inserting
random idle states, randomizing the order of executions, and
adding dummy operations [29].

VI. CONCLUSIONS
As new post-quantum cryptosystems for next-generation of

applications are being formulated, it is essential to investigate
the cost and effectiveness of side-channel analysis, especially
for lightweight, mobile platforms like RFID tags, smart-cards,
and constrained IoT nodes. This paper performs this crypto-
engineering tasks, for the first time, for binary-ring-learning-with-
errors, a new post-quantum public-key encryption scheme. We
propose a hardware design and conduct an in-depth analysis of
different side-channel attack vectors including SPA, DPA, and
higher-order DPA attacks, provide novel countermeasures, and
analyze their efficiency and hardware cost. The results show
that, the accumulative nature of polynomial multiplication with
binary coefficients, which is unique to B-RLWE, enables both
new attack vectors and more efficient countermeasures.
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