ACHyb: A Hybrid Analysis Approach to Detect
Kernel Access Control Vulnerabilities

Yang Hu
The University of Texas at Austin
Austin, Texas, USA
huyang@utexas.edu

Riley Wood
The University of Texas at Austin
Austin, Texas, USA
riley.wood@utexas.edu

ABSTRACT

Access control is essential for the Operating System (OS) secu-
rity. Incorrect implementation of access control can introduce new
attack surfaces to the OS, known as Kernel Access Control Vulner-
abilities (KACVs). To understand KACVs, we conduct our study on
the root causes and the security impacts of KACVs. Regarding the
complexity of the recognized root causes, we particularly focus on
two kinds of KACVs, namely KACV-M (due to missing permission
checks) and KACV-TI (due to misusing permission checks). We find
that over 60% of these KACVs are of critical, high or medium se-
curity severity, resulting in a variety of security threats including
bypass security checking, privileged escalation, etc. However, exist-
ing approaches can only detect KACV-M. The state-of-the-art KACV-M
detector called PeX is a static analysis tool, which still suffers from
extremely high false-positive rates.

In this paper, we present ACHyb, a precise and scalable approach
to reveal both KACV-M and KACV-I. ACHyb is a hybrid approach,
which first applies static analysis to identify the potentially vulner-
able paths and then applies dynamic analysis to further reduce the
false positives of the paths. For the static analysis, ACHyb improves
PeX in both the precision and the soundness, using the interface
analysis, callsite dependence analysis and constraint-based invari-
ant analysis with a stronger access control invariant. For the dy-
namic analysis, ACHyb utilizes the greybox fuzzing to identify the
potential KACVs. In order to improve the fuzzing efficiency, ACHyb
adopts our novel clustering-based seed distillation approach to gen-
erate high-quality seed programs. Our experimental results show
that ACHyb reveals 76 potential KACVs in less than 8 hours and
22 of them are KACVs (19 KACV-M and 3 KACV-I). In contrast, PeX
reveals 2,088 potential KACVs in more than 11 hours, and only 14
of them are KACVs (all KACV-M). Furthermore, ACHyb successfully
uncovers 7 new KACVs, and 2 of them (1 KACV-M and 1 KACV-T)
have been confirmed by kernel developers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468627

Wenxi Wang
The University of Texas at Austin
Austin, Texas, USA
wenxiw(@utexas.edu

Sarfraz Khurshid
The University of Texas at Austin
Austin, Texas, USA
khurshid@ece.utexas.edu

316

Casen Hunger
The University of Texas at Austin
Austin, Texas, USA
casen.h@utexas.edu

Mohit Tiwari
The University of Texas at Austin
Austin, Texas, USA
tiwari@austin.utexas.edu

CCS CONCEPTS

« Security and privacy — Operating systems security; Soft-
ware security engineering.

KEYWORDS
Program Analysis, Access Control, Operating System

ACM Reference Format:

Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid,
and Mohit Tiwari. 2021. ACHyb: A Hybrid Analysis Approach to Detect Ker-
nel Access Control Vulnerabilities. In Proceedings of the 29th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE °21), August 23-28, 2021, Athens, Greece.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468627

1 INTRODUCTION

Access control [48] is a fundamental and indispensable security
mechanism for the OS kernel. It secures the resources in the OS by
blocking the accesses which violate authorization rules. The Linux
kernel provides several access control modules, including Access
Control List (ACL) [15], Linux Capabilities [23], Linux Security
Module (LSM) [51], etc. Thanks to these modules, the Linux kernel
has been applied in many security sensitive environments [14].

Access control provides a security guarantee to the privileged
functions (i.e., the kernel functions implementing the security criti-
cal kernel functionalities), which ensures that privileged functions
can be called only when the caller/user has the permission. This is
usually achieved through the access control decision returned by the
permission check (i.e., the kernel function verifying if the permis-
sions granted to the caller/user are consistent with the caller/user
operations). The security guarantee is realized in two steps: 1) gen-
erating an access control decision via a permission check before
calling a privileged function, and 2) enforcing the access control
decision in the control flow so that the privileged function will not
be called if the access control decision is denied. However, attackers
could break the security guarantee, if the access control is incor-
rectly implemented in the above two steps. This security issue is
known as the Kernel Access Control Vulnerability (KACV).

To understand KACVs, we conduct an empirical study in this
paper to learn the root causes and the security impact of KACVs.
We first collected 101 KACVs from the National Vulnerability Data-
base [40]. After manual inspections, we classify KACVs into three
categories based on our identified three root causes. Given the

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468627
https://doi.org/10.1145/3468264.3468627

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

complexity of one root cause, in this paper, we only focus on two
categories, namely KACV-M which is due to missing permission
checks, and KACV-I which is due to misusing permission checks.
According to the Common Vulnerability Scoring System (CVSS),
24.4% of the KACV-M and KACV-I were scored as high or critical
security severity, and 38.8% were scored as the medium severity. In
addition, our study found that KACV-M and KACV-I cause a variety
of security threats, including bypass security checking, privileged
escalation, denial of services, etc.

To the best of our knowledge, existing approaches can only detect
KACV-M, and no work has been proposed to detect KACV-I. Zhang
et al. [62] propose a static analysis tool called PeX, which is the
state-of-the-art KACV-M detector. PeX conducts its static analysis in
three steps including 1) the permission check identification, 2) the
privileged function identification, and 3) the invariant analysis over
the permission checks and privileged functions to uncover KACVs.
To identify permission checks, PeX requires users to provide an
incomplete list of permission checks. It then performs program
slicing [28] to identify the wrappers of the initially provided per-
mission checks as the new permission checks. Next, PeX finds an
over-approximation of the privileged functions with a control-flow
analysis to collect the kernel functions which always execute after
permission checks. Last, it performs a control-flow based invariant
analysis to search for the potentially vulnerable paths where a priv-
ilege function is not preceded by any permission checks. However,
PeX suffers from significant false-positive rates due to the limitation
in each step. First, the permission check identification is unsound
especially when the user-provided permission checks lack diversity.
Second, the privileged function identification is imprecise due to
the weak over-approximation. Third, the invariant analysis is also
imprecise due to the weak invariant.

To mitigate the limitations of PeX, we present a precise, scalable
KACV detector called ACHyb which is capable of detecting both
KACV-M and KACV-I. ACHyb is a hybrid analysis approach, which
first applies static analysis to identify the potentially vulnerable
paths and then applies dynamic analysis to further reduce the false
positives of the paths. For the static analysis, ACHyb follows the
three steps of PeX, but with its own improvements for each step to
enhance both the precision and the soundness. For permission check
identification, ACHyb performs a semi-automated interface analysis
which is a soundy (i.e., mostly sound [32]) approach. For privileged
function identification, instead of using control-flow analysis as PeX,
ACHyb performs our proposed callsite dependency analysis which is
a data-flow analysis that could significantly improve the precision.
For invariant analysis, ACHyb proposes a stronger invariant and per-
forms a constraint-based analysis to check the invariant. To improve
the efficiency, instead of conducting the standard inter-procedural
analysis, ACHyb conducts the lightweight intra-procedural analysis
by exploiting the features of access control .

Moreover, instead of requesting human effort to do the manual
inspection as PeX, ACHyb applies dynamic analysis to reduce the
false positives of the potentially vulnerable paths identified. The
idea is to identify the feasible potentially vulnerable paths in which
the access control decisions are either missing (potential KACV-M) or
denied (potential KACV-I). To achieve this, ACHyb injects invariant
checks on the potentially vulnerable paths and conducts greybox
fuzzing to trigger these checks. To improve the fuzzing efficiency,

Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

317

ACHyb adopts our novel clustering-based seed distillation approach
to generate high-quality seed programs.

For static analysis, we implement ACHyb on top of the LLVM
pass framework [45]. For dynamic analysis, we build ACHyb based
on the greybox fuzzer called Syzkaller [57]. We perform an em-
pirical evaluation of ACHyb on the Linux kernel v4.18.5. As a result,
ACHyb reports 76 potential KACVs, 22 of which are KACVs includ-
ing 19 KACV-M and 3 KACV-I. In contrast, PeX reports 2,088 potential
KACVs, 14 of which are KACV-M. Besides, the KACVs detected by
ACHyb contain all the KACVs detected by PeX. We report 7 new
KACVs (5 KACV-M and 2 KACV-I) to kernel developers. By the time
of the paper publication, 2 new KACVs (1 KACV-M and 1 KACV-T)
have been confirmed. The results show that ACHyb is not only more
precise than PeX, but also capable of detecting new KACVs. In addi-
tion, ACHyb takes less than 8 hours to detect the KACVs while PeX
takes more than 11 hours, which shows that ACHyb is more efficient
than PeX. The source code of ACHyb and the dataset of our study
are publicly available at https://github.com/githubhuyang/achyb.
The contributions of this paper are:

o Study. We did an empirical study on KACVs mainly in two
aspects: the root causes and the security impacts of KACVs.

e Approach. We present ACHyb, which combines static and
dynamic analysis to detect both KACV-M and KACV-1I precisely
and efficiently. To the best of our knowledge, ACHyb is the
first tool that is capable of detecting KACV-I.

e Implementation. We implement ACHyb on top of the LLVM
and Syzkaller with about 5,000 lines of code.

e Empirical Evaluation. We did an empirical evaluation of
ACHyb on the Linux kernel v4.18.5 The experimental results
show that ACHyb is more precise and scalable than the state-
of-the-art tool PeX.

e Practical Impacts ACHyb is able to detect 7 new KACVs, 2
of which have been confirmed by the kernel developers.

2 A STUDY ON KACVS

We study the KACVs mainly in two aspects: the root causes and the
security impact of KACVs. In order to get KACVs, we first collect all
the CVE reports related to KACVs from the National Vulnerability
Database [40]. We use the cve-search tool [11] to find the CVE
reports that contain the keywords related to the access control,
such as “ACL”, “capability”, “permission”, etc. We filtered out the
old CVE reports on the kernel version lower than v2.6, since we
want to focus on the KACVs in the newer kernel versions. As a
result, 101 CVE reports were collected. Fig. 1a shows the number
of CVE reports related to the KACVs in the recent 10 years. We can
observe that from 4 to 18 KACVs were reported each year since
2010. Next, we extract the key information from the collected CVE
reports including the vulnerability descriptions, the CVSS ratings
(version 3.0), and the patches that fix the KACVs.

We manually inspect the vulnerability descriptions and patches
in our collected CVE reports to identify the root causes of the
KACVs. As a result, we classify the KACVs into three categories
based on the identified root causes, as shown in Fig. 1b. The first
category is called KACV-M, which refers to the KACVs due to miss-
ing permission checks. The second category is called KACV-I, which
refers to the KACVs due to misusing permission checks. The third

https://github.com/githubhuyang/achyb

ACHyb: A Hybrid Analysis Approach to Detect Kernel Access Control Vulnerabilities

(b) Root causes

(a) KACV counting across years

KACV-S

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Critical Others|nformation

Leakage

High

Bypass

Privilege
Escalation

Medium

(c) Severity in CVSS (d) Security threats

Figure 1: Statistical results of our KACV study.

1 /* fs/namespace.c in the Linux kernel v2.6.21 x/
2> static int do_change_type(...) {

3

4 // Missing the access control decision.

5 /* Patch:

6 if (!capable (CAP_SYS_ADMIN))

7 return -EPERM; %/

9 //
change_mnt_propagation(m,

Privileged function
type);

Figure 2: An example of KACV-M.

category is called KACV-S, which refers to the KACVs due to incor-
rect internal access control states. The percentage of KACV-M, KACV-I,
and KACV-S is 30.7%, 17.8%, and 51.5%, respectively. Due to the com-
plexity of the internal access control states and the state transitions,
we leave KACV-S detection as our further research work. In this
paper, we only focus on studying and detecting KACV-M and KACV-I.
Note that, to the best of our knowledge, no existing work has been
proposed to detect KACV-I.

We show two examples of KACV-M and KACV-I, respectively. Fig.
2 shows a KACV-M example. Obviously, the function do_change_type
misses calling the function capable to check if the caller has the
permission (i.e., CAP_SYS_ADMIN capability) to call the privileged
function change_mnt_propagation (line 10). Fig. 3 shows a KACV-I
example. The function vfs_dedupe_file_range calls the permis-
sion check function capable to query if the caller has the permis-
sion (i.e., CAP_SYS_ADMIN capability) to call the privileged func-
tion stored in the function pointer dedupe_file_range (line 16).
However, due to the incorrect usage of the access control decision
(is_admin, line 12), there exists a feasible path where the privileged
function is called when the access control decision is false (i.e.,
denied).

Fig. 1c shows the vulnerability severity of KCAV-M and KACV-I
which was measured in CVSS v3.0 ratings. 24.4% of the KCAV-M
and KACV-I were scored as high or critical severity, and 38.8%
were scored as the medium severity. Fig. 1d shows the statistics
of the security threats caused by KCAV-M and KACV-1I, based on
the CVE reports. The most frequent security threat is bypassing
security checking (44.9%); the second frequent threat is the privilege
escalation (26.5%); followed by the denial of service (18.4%); the
next is the information leakage (6.1%). The data shows that KACV-M
and KACV-TI have profound security impacts on the Linux kernel. The

318

1 /* fs/read_write.c in the Linux kernel v4.9 =x/

2 int vfs_dedupe_file_range(...) {

3 // Direct callsite to a permission check

4 bool is_admin = capable(CAP_SYS_ADMIN);

5 // Direct callsite to a non-privileged funtion
6 ret = clone_verify_area(...);

8 for (...) {// condition C1

if (...) {// condition C2

} else if (!(is_admin]||...)) {//incorrect
condition C3

} else {
// Indiret callsite to a privileged function
deduped = dst_file->f_op->dedupe_file_range(...)

20)
Figure 3: An example of KACV-1I.

goal of this paper is to propose a precise and scalable approach to
detect KACV-M and KACV-1I.

3 METHODOLOGY

3.1 Overview of ACHyb

The overview of ACHyb is shown in Fig. 4. The input of ACHyb is the
Linux kernel under examination encoded in LLVM Intermediate
Representation (IR); the output is the detected KACVs (KACV-M or
KACV-I). ACHyb is composed of two phases: the static analysis phase
(left part of Fig. 4) and the dynamic analysis phase (right part of
Fig. 4). The static phase firstly takes in the kernel IR and outputs
the potentially vulnerable paths, while the dynamic phase reduces
false positives of those paths and outputs the KACVs.

Specifically, in the static analysis phase, ACHyb performs a semi-
automated interface analysis to identify the permission checks
(Section 3.2.1). It then conducts a callsite dependency analysis to
identify the privileged functions (Section 3.2.2). Finally, ACHyb pro-
poses a stronger access control invariant over the detected permis-
sion checks and privileged functions, and performs a constraint-
based invariant analysis to get the potentially vulnerable paths
(Section 3.2.3). In the dynamic analysis phase, ACHyb firstly injects
run-time invariant checks on these potentially vulnerable paths

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Invariant
—> Check
Injection
Permission
Checks
Distillation
Privileged Selected
Functions Seeds
> Potentially Greybox
Vulnerable Fuzzing
| Path

g KACV
L. Reports

Static Analysis Dynamic Analysis

Figure 4: Overview of ACHyb

(Section 3.3.1). Next, ACHyb conducts seed distillation to generate
high-quality seed programs, and finally applies the greybox fuzzing
using those seed programs to trigger the injected invariant checks
and get the KACVs (Section 3.3.2).

3.2 Static Analysis

3.2.1 Permission Check Identification. The detection of KACV-M
and KACV-I requires the full list of permission checks. Since most
permission checks are not well documented, researchers are seeking
to employ program analysis to automatically collect the permission
checks. PeX [62] identifies the permission checks by utilizing call
graph slicing to search the wrappers of those permission checks,
given an incomplete list of the user-provided permission checks.
This approach is unsound, especially when the user-provided per-
mission checks lack diversity.

To mitigate the problem, our insight is that we can firstly get
an over-approximation of the permission checks and further re-
move the false positives with manual efforts. However, a weak
over-approximation might significantly increase the manual ef-
forts. To solve this problem, ACHyb performs a soundy (i.e., mostly
sound [32]) interface analysis to give a good approximation of the
permission checks. Our approximation is based on the two key ob-
servations. One is that a permission check is usually implemented
as an access control interface, which refers to a kernel function in the
access control module that can be called by the functions outside
the module. The other one is that a permission check usually re-
turns an access control decision through a boolean/integer variable.
Based on these two observations, ACHyb collects the access control
interfaces with boolean or integer return types to serve as a soundy
approximation of the permission checks.

After obtaining the approximation set of the permission checks,
instead of asking users to manually inspect every access control
interface, ACHyb only requests users to manually inspect a few se-
lected ones. ACHyb achieves this in two folds. First, it performs a
dependency analysis on the return variables of the access control in-
terfaces to divide the interfaces into several equivalence classes. The
equivalence class of access control interfaces is defined in Defini-
tion 3.1. Here, we say that a variable x depends on a variable y iff the

Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

319

1 /* kernel/capability.c in the Linux kernel v4.9 =x/

3 bool capable(int cap) {

4 return ns_capable(&init_user_ns,
50}

¢ EXPORT_SYMBOL (capable);

cap);

s bool ns_capable(struct user_namespace *ns, int cap) {
9 return ns_capable_common(ns, cap, true);

10}

11 EXPORT_SYMBOL (ns_capable);

135 bool ns_capable_noaudit(struct user_namespace *ns, int
cap) {
14 return ns_capable_common(ns, cap, false);

15 3}
16 EXPORT_SYMBOL (ns_capable_noaudit);

Figure 5: An example of permission check detection.

value of y determines the value of x. Second, for each equivalence
class, we ask users to manually inspect only one representative of
the class. If the representative is manually identified as a permis-
sion check, then all the interfaces in the same equivalence class are
automatically taken as the permission checks; otherwise, all the
interfaces in the equivalence class are not taken as the permission
checks.

Definition 3.1 (The Equivalence Class of Access Control Inter-
faces). The interface fx and the interface f; are in the same equiv-
alence class iff there exists a kernel function f; such that the return
variables of both f; and f; depend on the return variable of f;. O

To illustrate, we use an example in Fig. 5. Consider the three
access control interfaces, which are capable, ns_capable, and
ns_capable_noaudit. Based on the above definition of the equiv-
alence class, we know that the interface capable is equivalent to
the interface ns_capable, as the return variable of the interface
capable depends on that of the interface ns_capable (f; can be
fx or fy in Definition 3.1). Besides, the interface ns_capable is
equivalent to the interface ns_capable_noaudit, as both of their
return variables depend on the return variable of the interface
ns_capable_common. Therefore, the three interfaces are classified
into one equivalence class. If users manually identify any one of
the three interfaces (e.g., the interface ns_capable) as a permission
check, then the others (e.g., the interface capable and the interface
ns_capable_noaudit) will be automatically classified as permis-
sion checks. In the end, users only manually inspects one interface,
but identifies three permission checks.

3.2.2 Privileged Function ldentification. Besides the permission
checks, the detection of KACV-M and KACV-I also requires a list of
privileged functions. Unlike the permission checks which can be ap-
proximated by syntactic features, identifying privileged functions
needs to exploit the semantic features. To address this problem,
PeX [62] over-approximates the privileged functions by finding
the kernel functions whose executions are dominated [37] by the
permission checks. To be specific, if a callsite of the kernel function
fx always executes after a callsite of a permission check, then PeX
identifies the function fy as the privileged function. However, this
over-approximation is weak and might cause high false-positive

ACHyb: A Hybrid Analysis Approach to Detect Kernel Access Control Vulnerabilities

rates. To illustrate, we use the KACV-I example shown in Fig. 3.
Since the callsite of a permission check (line 4) dominates the call-
site of the function clone_verify_area (line 6), PeX classifies the
function clone_verify_area as a privileged function. However,
the function clone_verify_area is actually a non-privileged func-
tion.

To lower the false-positive rates, instead of using the control-flow
analysis as PeX, ACHyb applies a more fine-grained data-flow anal-
ysis to over-approximate the privileged functions. The data-flow
analysis is actually a callsite dependency analysis which searches
for the kernel functions whose executions depend on the access
control decisions. The definition of the callsite dependency is given
in Definition 3.2. For the KACV-I example in the Fig. 3, the callsite
of a privileged function (line 16) depends on the callsite of a per-
mission check capable (line 4). Because the access control decision
is_admin returned by the permission check is used in a condition
(line 12) which determines the execution of the privileged function.

Definition 3.2 (Callsite Dependency). A callsite ¢y depends on a
callsite ¢y iff the return value of ¢y controls the execution of the
callsite cy.)

Note that identifying such dependency usually needs an inter-
procedural data-flow analysis, which is notorious for the scala-
bility limitation [21]. To mitigate the issue, ACHyb performs an
intra-procedural data-flow analysis to identify the dependencies.
Compared to the inter-procedural analysis which extracts every
data-flows in the kernel, the intra-procedural analysis only focuses
on identifying the data-flows inside the body of each individual
kernel function, thereby achieving much better efficiency and scal-
ability. Moreover, the intra-procedural analysis would not cause
much accuracy loss in approximating the privileged functions, as
we observe that for most kernel functions excluding the permission
checks, the access control decision is only used inside the function
where it is defined and rarely used as an argument or a return vari-
able. In other words, the access control decision is rarely propagated
across the kernel functions.

Algorithm 1 demonstrates our method to detect the privileged
functions. ACHyb firstly gets the direct/indirect callsites in each
of the kernel functions excluding the permission checks (line 2-
5). ACHyb then conducts a callsite dependency analysis to get all
the callsites that depend on the collected callsites of permission
checks, and store them in the set S” (line 6-8). Next, for each call-
site in the set S’ excluding the ones of permission checks, ACHyb
identifies its callees as the privileged functions (line 10-12). To illus-
trate, Fig. 6 presents the intra-procedural data-flow analysis for the
KACV-I example shown in Fig. 3. ACHyb firstly detects all the call-
sites inside the function vfs_dedupe_file_range, including the
callsite of the function capable (line 4), and the callsite of the func-
tions btrfs_dedupe_file_range and xfs_file_dedupe_range
(line 16). Given a permission check list detected in the last sec-
tion, ACHyb identifies that only the function capable is a per-
mission check. Next, ACHyb conducts a callsite dependency anal-
ysis based on the access control decision is_admin returned by
the permission check capable. Since is_admin is used in an if
condition (line 12) and controls the execution of the functions
btrfs_dedupe_file_range and xfs_file_dedupe_range, ACHyb
classifies these two functions as the privileged functions.

320

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Algorithm 1 Privileged function detection algorithm.

Input: the kernel intermediate representation R
the set of permission checks Fperm
Output: the set of privileged functions Fprjy

1. function GET_PRIV_FUNCTIONS(R, Fperm)

2: Fuon_perm < R.get_functions() — Fperm

3: Fprl-u — @

4: for f € Fnon_perm do

5 S « f.get_callsites()

6: fors € Sdo

7 if s.is_perm_callsite() then

8: S’ « callsite_dependence_analysis(f, s)
9: fors’ € S’ do
10: if —s’.is_perm_callsite() then
11: Foullee < R.get_callees(s”)
12: Fpriv — Fpriv U Feallee
13: return Fpriy

capable
data flow
vfs_dedupe_file_range v

| line 4: bool is_admin = capable (CAP_SYS_ADMIN); |

data flowl

| line 12: if (!(is_admin || ...))) |

1
control flow (branch) *

line 14-18: else statement

| line 16: deduped = dst_file -> f_op ->dedupe_file_range(...); |

7
Z N

7 <

L. >

7 ~
¢ control flow ™~
(function call) S
A

|btrfs_dedupe_file_range | | xfs_file_dedupe_range |

Figure 6: An example to illustrate our privileged func-
tion detection algorithm. btrfs_dedupe_file_range and
xfs_file_dedupe_range are identified as privileged func-
tions, as their callsite in line 16 depends on the callsite of
the capable function (a permission check) in line 4.

3.2.3 Static Invariant Analysis. The goal of the invariant analysis
is to identify the potentially vulnerable paths where the callsites
of privileged functions are not protected by the permision checks.
The major limitation of the existing invariant analysis for KACV
detection is that the defined invariant is not strong enough which
may cause false negatives. PeX [62] proposes an invariant: for each
path in the control-flow graph, every callsite of a privileged function
must be preceded by at least one callsite of a permission check. This
invariant analysis cannot reveal the KACV-I in Fig. 3, as the indirect
callsite of the privileged function(s) (line 16) always executes after
the callsite of the permission check capable (line 4).

To mitigate the limitations, ACHyb firstly proposes a stronger
access control invariant: a privileged function should not be executed

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

when its corresponding access control decision is denied or not gen-
erated at all. One straightforward way to check this invariant is
to apply Symbolic Execution [5] on every path from each entry of
the kernel (i.e., the system calls) to the callsites of the privileged
function, and solve the constraints collected along the paths. How-
ever, this method suffers from the path explosion and the high
complexity of the path constraints. ACHyb adopts two strategies to
make the constraint-based invariant analysis scalable.

One strategy is to perform an intra-procedural analysis instead of
the inter-procedural analysis, based on the observation mentioned
in Section 3.2.2 that the access control decision is rarely propa-
gated across the kernel functions. For every path which reaches a
privileged function, ACHyb only collects the constraints inside the
caller of the privileged function. By replacing the inter-procedural
analysis with the intra-procedural analysis, both the path space
and the complexity of the constraints can be largely reduced. How-
ever, since only partial path constraints are collected, this analysis
can only find potentially vulnerable paths. ACHyb further reduces
false positives among these paths using dynamic analysis which is
introduced in Section 3.3.

The other strategy is to perform the above analysis only on the
non-privileged functions which call at least one privileged functions.
This is based on our observation that the non-privileged functions
usually need to request access control decisions before they call the
privileged functions, while the privileged functions rarely request
access control decisions with the assumption that their callers re-
quest and check the access control decisions beforehand. Besides,
there is no need to conduct the analysis on permission checks, as
they never call privileged functions.

Algorithm 2 shows our invariant analysis algorithm. ACHyb first
collects all the kernel functions excluding the permission checks
and the privileged functions. Inside each of these functions, ACHyb
collects the callsites of the privileged functions (line 2-5). It then gets
all the intra-procedural paths (with finite loop unrolling) that reach
these callsites (line 6-7). For each path, ACHyb obtains the callsites
of the permission checks in the path (line 8-9). If no such callsite
is found, the path is taken as a potentially vulnerable path (line
10-11). Otherwise, ACHyb fetches the access control decision and
the path constraints, and checks the satisfiability of the constraint
which is the conjunction of the path constraints and an additional
constraint stating that all the access control decisions are denied
(line 13-15). If the constraint is satisfiable, which means that the
path to the privileged function is feasible but the access control
decisions in the path are denied, the path is then identified as a
potentially vulnerable path (line 16-17).

We demonstrate our static invariant analysis using the relevant
path conditions of the KACV-I example shown in Fig. 3. Since there
is a callsite of a privileged function in line 16, ACHyb analyzes the
path to the callsite inside the function vfs_dedupe_file_range.
For simplicity, we consider the loop is unrolled only once. The
path to the callsite of the privileged function includes lines 2-10, 12,
14-16. First, ACHyb collects 3 path constraints inside the function
vfs_dedupe_file_range: C; ,—~Cz, and —C3. Next, ACHyb gener-
ates an additional constraint C4 := (is_admin = false), which
indicates that the access control decision of the function capable
is denied (line 4). Then, ACHyb checks if the following constraint

Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

321

Algorithm 2 Static invariant analysis algorithm.

Input: the kernel intermediate representation R
the set of permission checks Fperm
the set of privileged functions Fp;iy
Output: the set of potentially vulnerable paths Ppo;
function STATIC_INV_ANALYSIS(R, Fperm, Fpriv)
Fother < R.get_functions() — Fperm — Fpriv
Ppot — O
for f € Fy;per do
Spriv < f.get_priv_callsites(Fpyip)
fors € Sprip do
Piocar < f-get_paths(s)
which reach the callsite s.
8: for p € Pjycq do
9: Sperm < p.get_perm_callsites(Fperm)
10: if Sperm = @ then
11: Ppot — Ppot U {p}
else

1:
2
3
4:
5
6
7

> get paths inside f

13: D « p.get_dec_var(Sperm)

14: C « p.get_path_constraints()

15: C « CU{d =denied|d € D}

16: if is_satisfiable(A\ c) then
ceC

17: Ppot < Ppor U {p}

18: return Ppos

is satisfiable:

C1 A =Cy A —=Cs A Cy.
Since the constraint is satisfiable, the path is identified as a poten-
tially vulnerable path.

3.3 Dynamic Analysis

The dynamic analysis focuses on reducing false positives among the
potentially vulnerable paths detected by the static analysis. ACHyb
achieves this in two steps. First, ACHyb injects the run-time invariant
checks to the kernel image, as introduced in Section 3.3.1. Then,
ACHyb conducts greybox fuzzing to cover the potentially vulnerable
paths so that the invariant checks can be triggered and the KACVs
can be revealed, as presented in Section 3.3.2.

3.3.1
intra-procedural invariant analysis would cause false positives. To
remedy this problem, ACHyb rigorously checks the access control in-
variant in the run time. For each potentially vulnerable path, ACHyb
instruments the kernel with a run-time invariant check which is
added exactly before the callsite of each privileged function. As
introduced in Section 3.2.3, the static invariant analysis can detect
two kinds of potentially vulnerable paths reachable to the priv-
ileged functions: the paths with missing permission checks and
the paths with denied access control decisions. If a test execution
triggers the run-time checks and covers the potentially vulnerable
path with missing permission checks, the potentially vulnerable
path is feasible and thus it is taken as the path that could reveal
KACV-M. Similarly, if the potentially vulnerable path with denied ac-
cess control decision is feasible, the path is considered to reveal the
KACV-I. For the KACV-I example in Fig. 3, ACHyb injects a run-time

Invariant Check Injection. As mentioned in Section 3.2.3, the

ACHyb: A Hybrid Analysis Approach to Detect Kernel Access Control Vulnerabilities

Seed

Conversion gt
Programs

Sampled
* Trace Slices|

Kernel n
g e
Selected

i Clusters
ce

Tra
Slices Potentially
igle Vulnerable

Paths

Cluster
Selection

Trace
Slicing

Clusters

VD Clustering

Embedding

Figure 7: An overview of our seed distillation approach.

invariant check assert(is_admin) before calling the privileged
function (line 16), to check if the potentially vulnerable path (line 4-
10, 12, 14-16) is feasible when the access control decision is_admin
is false (i.e., denied).

3.3.2 Greybox Fuzzing with Seed Distillation. Greybox fuzzing has
been widely used in patch testing, bug detection, and bug repro-
duction [7, 9, 41]. ACHyb regards the invariant checks as the targets,
and utilizes the greybox fuzzing to trigger them. To further improve
the efficiency of fuzzing, we propose a novel clustering-based seed
distillation approach to generate high-quality seed programs (i.e.,
sequences of system calls) which could guide the fuzzer to rapidly
approach the invariant checks with less chance of being trapped.
Fig. 7 briefly shows our seed distillation approach. ACHyb first col-
lects execution traces from the real-world programs in the Linux
Test Project (LTP) [49]. We choose LTP because it is well maintained
(by many companies such as IBM, Cisco, Red Hat, etc) aiming at
generating good test programs for the Linux development. It has
also been applied by the state-of-the-art seed distillation tool called
Moonshine [42]. After collecting the traces, ACHyb then performs
program slicing [20, 34] to split the traces into trace slices. Next,
ACHyb does the trace embedding to get the vector representation
of each trace slice, and use the scikit-learn machine learning
framework [8] to perform the K-means clustering [30] on the trace
slices. ACHyb selects the clusters which are “closer” to the poten-
tially vulnerable paths. Details about the trace embedding and the
cluster selection are introduced in the following sections. For each
selected cluster, ACHyb randomly samples a few trace slices and
converts them into the seed programs. These seed programs are
finally fed to the greybox fuzzer.
Trace Embedding. Inspired by the existing program embedding
approaches [1, 2, 6, 47, 58], we propose our trace embedding ap-
proach to convert the trace slices into vector representations. First,
we convert all the trace slices into our defined multi-relation graph
which encodes the syntactic and semantic information of the trace
slices. Second, we use the PyTorch-BigGraph system [29] to gener-
ate the vector representation for each node in the graph based on the
information from their neighbors. Last, we extract the embedding
of each node representing the trace slice as our trace embedding.
Formally, we define the multi-relation graph as a directed graph
represented by a tuple (V, R, E), where V is a set of nodes, R is

a set of relations, and E is a set of labeled directed edges x o y

322

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

trace slice t1:
ci: a2=ni(at)

trace slice ta:
c1: a2=ni(a1)
c2: a3 = n2(az)

Figure 8: An example of trace embedding.

where x,y € V and r € R. The multi-relation graph depicts the
following syntactic and semantic information in trace slices: each
trace slice consists of at least one system call; each system call has
its system call name, its arguments (if any) and its return value (if
any); each trace slice covers a set of code branches. Accordingly,
we define five node types to represent a trace slice (dented as t), a
system call (denoted as c), the name of a system call (denoted as n),
the argument/return value of a system call (denoted as a), and the
branch covered by a trace slice (denoted as b), respectively. Besides,
we define five relation types as follows:
e Trace-to-Call Relations: The relation a; between the trace
slice t and its i-th system call ¢; is denoted as ¢ & cj.
e Call-to-Name/Arguments/Return Relations: The relation f;
between the system call ¢ and its callname n is denoted as

B . .
¢ = n; the relation P2 between the system call ¢ and its
. B .
argument a is denoted as ¢ a; the relation B3 between the

system call ¢ and its return value v is denoted as ¢ & v.
o Trace-to-Coverage Relation: The relation y between a trace

slice t and the covered code branch b is denoted as t 01> b.

Fig. 8 shows the multi-relation graph of a brief example. There are
two trace slices t1 and ¢, in the example. The trace slice #; contains
one system call c1, and the trace slice t; contains a sequence of two
system calls ¢; and cp. We get the vector representation of each
node in the graph with the node embedding, and extract the vector
representations of all the trace slice nodes (¢; and t2) as our trace
embedding.

Cluster Selection. Intuitively, if the paths covered by a cluster of
trace slices are similar to the potentially vulnerable paths, the seed
programs converted from the trace slices in the cluster are inclined
to cover the potentially vulnerable paths with a few mutations.
Our cluster selection is based on this intuition. For each potentially
vulnerable path, ACHyb selects the cluster which has the maximal
path similarity to the path. The path similarity is defined based
on the Jaccard distance between the potentially vulnerable path
and the paths covered by system calls in the trace slices. Formally,
let p be a potentially vulnerable path, and Q be a set of paths
which are covered by the clusters; the path similarity between
p and Q is defined as S(p, Q) = meangeo(J(B(p), B(q))), where

Xny
JX.Y) = IXGYI

trace slices which are sampled from selected clusters are finally

and B(p) is the set of branches covered by p. The

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

Table 1: The KACV detection precision of ACHyb and Pex. # perm refers to the number of detected permission checks. # priv
refers to the number of detected privileged functions. # pvp refers to the number of detected potentially vulnerable paths. #
wrn refers to the number of warnings. # kcav refers to the number of detected KACVs.

AC | ACHyb \ PeX
Module ‘ #perm #priv #pvp #wrn #kacv precision ‘ #perm #priv #pvp #wrn #kacv precision
CAP 28 560 108 38 9 23.7% 19 3,245 850 850 4 0.5%
LSM 243 2,254 90 31 9 29.0% 243 10,260 1,017 1,017 7 0.7%
DAC 27 609 29 7 4 57.1% 22 537 221 221 3 1.4%
Total ‘ 298 3,423 227 76 22 28.9% 284 14,042 2,088 2,088 14 0.7%

converted to seed programs. Suppose that the trace slice ¢, in Fig.
8 has been sampled from a selected cluster. The seed program
converted from ¢, consists of two system calls from t5, which is
ni(ai);nz(az).

3.4 Implementation

We implement the static analysis of ACHyb based on the LLVM pass
framework [45] with about 3,200 lines of C++ code. For the dynamic
analysis, we build the greybox fuzzing and the seed distillation on
top of the kernel greybox fuzzer called Syzkaller [56] with about
1,100 lines of GO code and 600 lines of Python code.

4 EVALUATION

4.1 Experimental Setup

Baseline. To evaluate the KACV detection performance of ACHyb,
we choose PeX [62], the state-of-the-art tool for KACV detection
which has its publicly available implementation!, as our baseline.
Besides, to evaluate our seed distillation approach, we choose
Moonshine [42] which is the state-of-the-art seed distillation tool,
as our baseline.

Kernel Version and Compilation. We evaluate ACHyb on the
Linux kernel v4.18.5, the version PeX uses in its evaluation. We
compile the kernel source with the allyesconfig configuration
using the clang-9 toolchain [55] and the wllvm tool [46].
Subjects. We take all the three subject modules in the PeX evalua-
tion as our subjects. They are commonly used kernel access control
modules, including Linux Capabilities (CAP), Linux Security Mod-
ules (LSM) and Discretionary Access Control (DAC).

Environment. All the experiments are conducted on a machine
with two Intel(R) Xeon(R) E5-2620 v4 processors (32 logical cores
in total) and 256-GB RAM. The operating system is Ubuntu 20.10.

4.2 Research Questions

We try to answer the three following research questions in our
experiments:

Question 1. How precisely can ACHyb detect KACVs?

Question 2. How efficiently can ACHyb detect KACVs?

Question 3. Can ACHyb detect new KACVs?

4.3 RQ1: Detection Precision

To evaluate the detection precision, we need to identify the KACVs
from the warnings (i.e., potential KACVs) reported by ACHyb and

https://github.com/lzto/pex

323

PeX. To do so, we conduct a three-step manual inspection. First, we
manually inspect all the warnings reported by both tools, among
which we obtain 15 KACVs that have been confirmed by the kernel
developers or reported by the authors of PeX. Then, we manually
inspect the rest warnings reported by ACHyb and identify 7 warn-
ings as new KACVs. Next, we report these 7 new KACVs to the
kernel developers. By the time of the paper publication, they have
confirmed 2 new KACVs.

4.3.1 The Overall Detection Precision. Table 1 shows the detection
precision of ACHyb and PeX. For CAP module, the detection pre-
cision of ACHyb is 23.7%, while the precision of PeX is only 0.5%.
For LSM module, the detection precision of ACHyb is 29.0%, while
the precision of PeX is only 0.7%. For DAC module, the detection
precision of ACHyb is 57.1%, while the precision of PeX is only 1.4%.
We can also observe that, among the three modules, both tools
perform with the highest precision on module DAC; perform with
the second highest precision on module LSM; perform with the
lowest precision on module CAP. In total, for all the three modules,
28.9% of the warnings reported by ACHyb are KACVs, while only
0.7% of the warnings reported by PeX are KACVs. Furthermore,
the KACVs detected by ACHyb contain all the ones detected by PeX.
Overall, we can say that ACHyb is much more precise than PeX in
KACYV detection.

4.3.2 Static and Dynamic Analysis. Table 1 also shows the inter-
mediate analysis results, which can help us understand how each
analysis in ACHyb contributes to its precise detection.
Permission Check Identification. As for the permission check
identification, ACHyb reports 14 more permission checks than PeX.
We manually inspect these permission checks and confirm that all
of them are the real permission checks. The results show that the
soundy interface analysis of ACHyb can help identify more permission
checks than PeX.

Privileged Function Identification. From Table 1, we can ob-
serve that ACHyb reports much less privileged functions than PeX.
To study the quality of the reported privileged functions, we ran-
domly sample 400 functions reported by ACHyb and PeX, respec-
tively. After manually inspecting the sampled privileged functions,
we found that 83% of the sampled privileged functions identified
by ACHyb are the real privileged functions, while only 8% of the
sampled privileged functions identified by PeX are the real privi-
leged functions. In addition, the real privileged functions detected
by ACHyb contain all the real ones detected by PeX. In general, we
can conclude that our proposed callsite dependency analysis improves
the precision of the privileged function identification.

https://github.com/lzto/pex

ACHyb: A Hybrid Analysis Approach to Detect Kernel Access Control Vulnerabilities

853

mmm ACHyb

800 o ACHyb + Pex

700
600
2500 1
Q
% 400 |
329
300 1
200 1

100

CAP LSM DAC TOTAL

Figure 9: The number of potentially vulnerable paths de-
tected by the invariant analysis. “ACHyb+PeX” refers to the
results of PeX invariant analysis with the permission checks
and privileged functions detected by ACHyb. # pvp refers to
the number of detected potentially vulnerable paths.

Table 2: The time cost (in minutes) of static analysis. tperm
refers to the time cost of permission check identification.
tpriv refers to the time cost of privileged function identifica-
tion. tjp, refers to the time cost of invariant analysis. t,,¢,q1;
refers to the total time cost of the entire static analysis.

AC ‘ Lperm Lpriv ‘ tino ‘ Loverall ‘
Module | ACHyb | PeX | ACHyb | PeX | ACHyb | PeX | ACHyb | PeX |
CAP 01 |03 | 83 | 86 | 373 |2722]| 457 | 2811
LSM 01 | 03| 79 | 88 | 342 | 2549 | 422 | 2640
DAC 01 | 02| 80 | 85| 105 |1193| 186 | 1280
Total | 03 | 08 | 242 |259| 820 | 6464 | 1065 | 6731 |

Invariant Analysis. The invariant analysis is based on the de-
tected permission checks and privileged functions. To conduct an
apple-to-apple comparison on the invariant analysis, we run PeX
invariant analysis on the permission checks and privileged func-
tions detected by ACHyb. Fig. 9 shows the number of potentially
vulnerable paths detected by the invariant analysis of both tools.
PeX reports 853 potentially vulnerable paths, while ACHyb reports
only 227 potentially vulnerable paths. After manually checking all
the 853 paths reported by PeX under the new configuration, we
found that the number of the real vulnerable paths reported by PeX
is 19, while the number of real paths reported by ACHyb is 22 (as
shown in Table 1). Therefore, the precision of ACHyb invariant anal-
ysis is 9.7%, while the precision of PeX invariant analysis is 2.2%.
Besides, the real vulnerable paths reported by ACHyb contain all the
ones reported by PeX. The results show that the invariant analysis of
ACHyb is more precise and sound than the invariant analysis of PeX.
Dynamic Analysis. Finally, we notice that 33.4% of the potentially
vulnerable paths are reported as warnings by our dynamic analysis.
We manually check the 151 unreported paths and found that all
of them are false positives. In contrast, PeX directly reports all the
2,088 potentially vulnerable paths as warnings which causes the ex-
tremely high false-positive rates. The results show that our dynamic
analysis helps to reduce the false positives in KACV detection.

324

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

0.35

®- ADistill _ ® L L [] *]
MDistill Pt
0301 _o- NoDistill
®- NoSeed @
v
T 025 ')
5]
_5 e
§ 0.20 &
]
g
£
5 0.15 ® ®
] e
& ®
20.10 v
®
0.05 - o--0--C--0--0--¢ e---o--9--0
L
o)
0.00{ @
0 2 4 6 8 10 12

Time (hour)

Figure 10: Time efficiency in triggering the invariant checks
using four seed distillation approaches.

4.4 RQ2: Detection Efficiency

4.4.1 Static Analysis. Table 2 shows the time cost by the static
analysis of ACHyb and PeX. The results show that, in total, ACHyb
is 6.3x faster than PeX. The time differences are subtle in both the
permission check detection and the privileged function detection.
However, the big time differences lie in the invariant analysis where
ACHyb is 7.9x faster than PeX. In addition to the time costs of the
automated analysis, PeX requires users to provide an initial list of
permission checks, while ACHyb requires manual effort to inspect
the representative permission check candidates. For all the three
subject modules, the user-provided list in PeX evaluation contains
196 permission checks, while the candidate list produced by ACHyb
only contains 17 permission checks. To measure the required man-
ual effort in the candidate inspection, each student author in this
paper inspects the 17 candidates independently. As a result, each
person spends 6 minutes on average (4 minutes in minimum and 8
minutes in maximum) on this inspection. Overall, the results indicate
that the static analysis of ACHyb is more efficient than PeX.

4.4.2 Dynamic Analysis. To evaluate the efficiency of the dynamic
analysis, we focus on evaluating our proposed seed distillation
approach. We choose the state-of-the-art seed distillation tool called
Moonshine [42] as our baseline, and construct four groups of the
seed programs: 1) no seed programs (denoted as NoSeed); 2) the seed
programs which are converted from the execution traces without
any distillation (denoted as NoDistill); 3) the seed programs which
are distilled from the execution traces using Moonshine (denoted
as MDistill); 4) the seed programs which are distilled from the
execution traces using ACHyb (denoted as ADistill). We evaluate
the time efficiency and the number of triggered invariant checks
of ACHyb using each seed group. To get the reliable experimental
results, we follow the fashion of the recent research work on fuzzing
evaluation [18, 27]. For each group of the seed programs, we run
ACHyb with 16 logical cores in 12 hours and repeat the experiment
11 times. We perform the Mann-Whitney U test [35] to analyze the
significance of the performance differences.

Fig. 10 shows the median percentage of the triggered invariant
checks. We can observe that only about 5% of the invariant checks
can be triggered when no seed program is applied. While the seed
programs without distillation help to trigger more invariant checks,

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

Table 3: New KACVs Detected by ACHyb.

ID File Path Function Type Description Status
CAP-1 net/core/rtnetlink.c do_setlink KACV-I Misusing the CAP_NET_ADMIN check. Confirmed
CAP-2 drivers/char/random.c _extract_crng KACV-M Missing the CAP_SYS_ADMIN check. Confirmed
CAP-3 net/ipv6/addrconf.c addrconf_join_anycast KACV-M Missing the CAP_NET_ADMIN check. Ignored
CAP-4 drivers/tty/sysrq.c sysrq_do_reset KACV-M Missing the CAP_SYS_BOOT check. Ignored
LSM-1 kernel/signal.c send_sig_info, force_sigsegv KACV-M Missing the security_task_kill check. Ignored
LSM-2 ipc/sem.c newary KACV-I Misusing the security_sem_alloc check. Ignored
DAC-1 fs/coredump.c cn_print_exe_file KACV-M Missing the inode_permission check. Ignored

only 15% of the invariant checks can be triggered. Furthermore,
there is less than 5% improvement when using the seed programs
distilled by Moonshine, compared to using the seed programs with-
out any distillation. When using the seed programs distilled by
ACHyb, more than 30% of the invariant checks can be triggered.
Furthermore, the results of the Mann-Whitney U test indicate that
the triggered checks using ACHyb seed distillation approach are
significantly more than the triggered checks using the other three
approaches (all three p-values of Mann-Whitney U test are smaller
than 0.001). Based on the above results, we can conclude that ACHyb
seed distillation approach can significantly improve the efficiency of
triggering the invariant checks.

4.4.3 The Overall Detection Efficiency. As introduced, PeX requires
human effort to remove the false positives of the results produced
by its static analysis, while ACHyb applies dynamic analysis to re-
move the false positives. After manually inspecting the potentially
vulnerable paths, we find that ACHyb has successfully triggered all
the invariant checks associated with 22 KACVs in the first 6 hours.
In addition to the 112.5 minute time cost in the static analysis (106.5
minutes for automatic analysis and 6 minutes for manual inspec-
tion of permission check candidates), ACHyb successfully detects all
22 KACVs in less than 8 hours. On the contrary, PeX spends more
than 11 hours on only the static analysis phase without taking into
account the time taken by the manual false positive removal. The
results show that ACHyb is more efficient than PeX.

4.5 RQ3: New KACVs

Table 3 shows the 7 new KACVs (5 KACV-M and 2 KACV-TI) that we
report to the kernel developers. As a result, 2 new KACVs (1 KACV-M
and 1 KACV-I) are confirmed by the kernel developers. We are still
waiting for the feedback for the rest of 5 new KACVs. In detail,
4 KACVs (CAP-1, CAP-2, CAP-3, and CAP-4) are due to missing or
misusing CAP checks in drivers or the net subsystem; 2 KACVs
(LSM-1 and LSM-2) are due to missing or misusing LSM checks
in the signal mechanism or the semaphore mechanism; 1 KACV
(DAC-1) is due to missing a DAC check in the file system. Overall,
we can say that ACHyb is able to detect new KACVs.

5 DISCUSSION

In this section, we want to discuss the limitations of ACHyb and
our future work. We recognized four limitations of ACHyb. First,
ACHyb cannot detect non-function permission checks. Second, ACHyb
cannot detect privileged functions which are never protected by
any identified permission checks. However, this is a rare case, as it

325

is quite unlikely that kernel developers failed to add any permis-
sion checks to protect a privileged function especially in recent
kernel versions. Third, ACHyb may get false positives in terms of
privileged function detection, as there may exist non-privileged
functions which are also protected by permission checks. Fourth,
ACHyb cannot guarantee that all potentially vulnerable paths can
be covered in a given time budget, which may cause false negatives.
Nevertheless, the coverage can be improved by adding more diverse
seed programs. In future work, we will try to enhance ACHyb to
overcome the above limitations. We also plan to upgrade ACHyb
to support more access control modules in the Linux kernel. In
addition, we plan to propose effective approaches to detect KACV-S.
One possible direction would be to specify the correctness of the
internal access control states and validate these states using the
specifications dynamically.

6 RELATED WORK

Missing Check Detection. Detecting missing checks is pioneered
by Engler’s work [12], which attempts to automatically extract
the programmers’ beliefs from the source code to detect missing
checks. Following this direction, several static analysis tools have
been proposed to detect missing checks. AutoISES [54] automati-
cally infers the security specification given a set of user-provided
security checks and detects the security violations in the Linux
kernel. ROLECAST [52] leverages the standard software engineering
patterns/conventions to detect the missing security checks in the
Web applications. CRIX [31] proposes a novel peer slicing approach
to detect missing checks for the critical variables in the Linux ker-
nel. LRSan [60] proposes its specialized data-flow and control-flow
analysis to detect missing rechecks for critical variables. PeX [62]
is the state-of-the-art tool to detect the missing access control per-
mission checks (KACV-M), which is the most related work to ACHyb.
ACHyb differs from PeX in two main aspects. First, ACHyb focuses
on detecting both KACV-M and KACV-I. Second, ACHyb performs a
novel hybrid analysis to make the KACV detection both scalable
and precise, while PeX is a purely static analysis tool suffering from
high false-positive rates.

Greybox Fuzzing of OS Kernel. Greybox fuzzing achieves big
success in revealing real-world vulnerabilities in recent decades
[33, 59]. Several greybox fuzzers for OS kernel including Syzkaller
[57], TriforceAFL [19] and Trinity [22] have been released. Besides
the tool developments, researchers make great effort in enhanc-
ing both the effectiveness and the efficiency of the kernel fuzzing.
Breakthroughs have been made in the complex path condition
solving [4, 24, 26], seed generation [17], seed distillation [42], file
system testing [25, 61], driver/firmware testing [10, 36, 44, 53, 63],

ACHyb: A Hybrid Analysis Approach to Detect Kernel Access Control Vulnerabilities

error handling testing [43], etc. Different from the existing greybox
fuzzers, ACHyb proposes a novel clustering-based seed distillation
approach to facilitate the greybox fuzzing in KACV detection.
Kernel Verification and Validation. Several approaches [3, 13,
16, 38, 39, 50] have been proposed to verify or validate the cor-
rectness of the kernel source code. For example, Serval [38] is
a framework for verifying system software. Given an interpreter
provided by users, it performs symbolic execution on the system
code to do the verification. Besides, TESLA [3] provides users a
language to specify the dynamic safety properties of the Linux
kernel. The specified properties are then converted into run-time
checks to validate the kernel. Different from the above approaches
which require the users to provide the specification of the Linux
kernel, ACHyb is able to detect KACVs based on the invariants of
the access control.

7 CONCLUSION

In this paper, we first conduct an empirical study on KACVs using
National Vulnerability Database. Motivated by our study, we focus
on detecting two kinds of KACVs: KACV-M and KACV-I. We present
a precise and scalable hybrid analysis approach called ACHyb to de-
tect both KACV-M and KACV-I. ACHyb first performs a more precise
and more sound static analysis to identify the potentially vulnera-
ble paths, and then applies an efficient dynamic analysis to reduce
the false positives of these paths. Our experimental results show
that ACHyb outperforms PeX, the state-of-the-art KACV detector, in
terms of both the detection precision and the efficiency. Further-
more, ACHyb detects 7 new KACVs, 2 of which have been confirmed
by the kernel developers.

ACKNOWLEDGMENTS

We would like to thank the anonymous FSE’21 reviewers, S&P’21
reviewers and kernel developers for their valuable feedback. This
work was supported by Intel Strategic Research Alliance (ISRA)
grant, SRC grant TS-2965, NSF grants 26101114, 26101313, and CCF-
1718903, and a grant from the Army Research Office accomplished
under Cooperative Agreement Number W911NF-19-2-0333. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Office
or the U.S. Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes notwith-
standing any copyright notation herein.

REFERENCES

[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-
based representation for predicting program properties. ACM SIGPLAN Notices
53, 4 (2018), 404-419.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1-29.

Jonathan Anderson, Robert NM Watson, David Chisnall, Khilan Gudka, Ilias
Marinos, and Brooks Davis. 2014. TESLA: temporally enhanced system logic
assertions. In Proceedings of the Ninth European Conference on Computer Systems.
1-14.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In The Network and Distributed System Security Symposium (NDSS), Vol. 19. 1-15.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and

Irene Finocchi. 2018. A survey of symbolic execution techniques. ACM Computing
Surveys (CSUR) 51, 3 (2018), 1-39.

(2]

(3]

326

[6]

—
)

—
&

[9]

(10]

[11

[12

(13]

(18]

[19

[20]

[
—

[22]

[23

[24

[25

IS
S

[27

(28]

[33

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: probabilistic
model for code. In International Conference on Machine Learning. 2933-2942.
Marcel Béhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 2329-2344.

Matthieu Brucher. 2020. scikit-learn: Machine Learning in Python. https://scikit-
learn.org/stable/.

Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711-725.

Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. 2017. Difuze: Interface aware
fuzzing for kernel drivers. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 2123-2138.

Dulaunoy, Moreels Alexandre, Vinot Pieter-Jan, and Raphael. 2020. CVE-SEARCH
PROJECT. https://www.cve-search.org/.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5 (2001), 57-72.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using verification to disentangle secure-enclave hardware from soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles.
287-305.

Google. 2020. System and kernel security. https://source.android.com/security/
overview/kernel-security.

Andreas Griinbacher. 2003. POSIX Access Control Lists on Linux.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 259272.

Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg, and Zhong Shao. 2019.
Integrating Formal Schedulability Analysis into a Verified OS Kernel. In Interna-
tional Conference on Computer Aided Verification. Springer, 496-514.
HyungSeok Han and Sang Kil Cha. 2017. Imf: Inferred model-based fuzzer. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2345-2358.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 3 (2020), 1-29.

Jesse Hertz. 2016. A linux system call fuzzer using TriforceAFL. https://github.
com/nccgroup/TriforceLinuxSyscallFuzzer.

Susan Horwitz, Phil Pfeiffer, and Thomas Reps. 1989. Dependence analysis
for pointer variables. In Proceedings of the ACM SIGPLAN 1989 Conference on
Programming language design and implementation. 28-40.

Joxan Jaffar, Vijayaraghavan Murali, Jorge A Navas, and Andrew E Santosa.
2012. Path-sensitive backward slicing. In International Static Analysis Symposium.
Springer, 231-247.
Dave Jones. 2011.
kernelslacker/trinity.
Michael Kerrisk. 2019. overview of linux capabilities. http://man7.org/linux/man-
pages/man7/capabilities.7.html.

Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In The
Network and Distributed System Security Symposium (NDSS).

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding semantic bugs in file systems with an extensible fuzzing
framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 147-161.

Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae
Yun, and Taesoo Kim. 2017. Cab-fuzz: Practical concolic testing techniques
for {COTS} operating systems. In 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). 689-701.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123-2138.

Bogdan Korel and Juergen Rilling. 1998. Program slicing in understanding of large
programs. In Proceedings. 6th International Workshop on Program Comprehension.
IWPC’98 (Cat. No. 98TB100242). IEEE, 145-152.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large-scale graph
embedding system. arXiv preprint arXiv:1903.12287 (2019).

Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 2003. The global k-means
clustering algorithm. Pattern recognition 36, 2 (2003), 451-461.

Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting missing-check bugs
via semantic-and context-aware criticalness and constraints inferences. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 1769-1786.

Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. {DR}.{CHECKER}: A soundy analysis
for linux kernel drivers. In 26th { USENIX} Security Symposium ({USENIX} Secu-
rity 17). 1007-1024.

Valentin Jean Marie Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science,

Trinity: Linux system call fuzze. https://github.com/

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.cve-search.org/
https://source.android.com/security/overview/kernel-security
https://source.android.com/security/overview/kernel-security
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

[34]

[35]

[36

[37]

@
&

[39]

[40]
[41]

[42

[43

[44]
[45]
[46]

[47

[48

[49]

and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering
(2019).

Dror E Maydan, John L Hennessy, and Monica S Lam. 1991. Efficient and exact
data dependence analysis. In Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation. 1-14.

Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1-1.

Alejandro Mera, Bo Feng, Long Lu, Engin Kirda, and William Robertson. 2021.
DICE: Automatic Emulation of DMA Input Channels for Dynamic Firmware
Analysis. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE.

Steven Muchnick et al. 1997. Advanced compiler design implementation. Morgan
kaufmann.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and
Xi Wang. 2019. Scaling symbolic evaluation for automated verification of systems
code with Serval. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 225-242.

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Born-
holt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-button verification
of an OS kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles. 252-269.

NIST. 2020. National Vulnerability Database. https://nvd.nist.gov/.

Sebastian Osterlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
Parmesan: Sanitizer-guided greybox fuzzing. In 29th {USENIX} Security Sympo-
sium ({USENIX} Security 20). 2289-2306.

Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing
{OS} Fuzzer Seed Selection with Trace Distillation. In 27th { USENIX} Security
Symposium ({USENIX} Security 18). 729-743.

Aditya Pakki and Kangjie Lu. 2020. Exaggerated Error Handling Hurts! An
In-Depth Study and Context-Aware Detection. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security.

Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing USB
Drivers by Device Emulation. (2020).

LLVM Project. 2020. Writing an LLVM Pass.
WritingAnLLVMPass.html.

Tristan Ravitch. 2020. Whole Program LLVM. https://github.com/travitch/whole-
program-llvm.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. 2016. Learning
programs from noisy data. ACM SIGPLAN Notices 51, 1 (2016), 761-774.

Ravi S Sandhu and Pierangela Samarati. 1994. Access control: principle and
practice. IEEE communications magazine 32, 9 (1994), 40-48.

SGI, OSDL, and Bull. 2012. Linux Test Project. https://linux-test-project.github.io.

https://llvm.org/docs/

Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Em-
ina Torlak, and Xi Wang. 2018. Nickel: A framework for design and verification
of information flow control systems. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 287-305.

Stephen Smalley, Timothy Fraser, and Chris Vance. 2020. Linux Security Modules:
General Security Hooks for Linux. https://www.kernel.org/doc/html/latest/
security/lsm.html.

Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: finding
missing security checks when you do not know what checks are. In Proceedings
of the 2011 ACM international conference on Object oriented programming systems
languages and applications. 1069-1084.

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the
Hardware-OS Boundary.. In The Network and Distributed System Security Sympo-
sium (NDSS).

Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Specification and Detecting Violations..
In USENIX Security Symposium. 379-394.

The Clang Team. 2019. Clang 9 documentation. https://releases.llvm.org/9.0.0/
tools/clang/docs/ReleaseNotes.html.

Dmitry Vyukov. 2015. syzbot. https://syzkaller.appspot.com/upstream.

Dmitry Vyukov. 2015. Syzkaller. https://github.com/google/syzkaller.

Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair:
data-driven feedback generation for introductory programming exercises. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 481-495.

Pengfei Wang and Xu Zhou. 2020. SoK: The Progress, Challenges, and Perspec-
tives of Directed Greybox Fuzzing. arXiv preprint arXiv:2005.11907 (2020).
Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check it again: Detecting
lacking-recheck bugs in os kernels. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 1899-1913.

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
2019. Fuzzing file systems via two-dimensional input space exploration. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 818-834.

Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and

Ruowen Wang. 2019. Pex: A permission check analysis framework for linux
kernel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1205—

1220.

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: high-throughput greybox fuzzing of iot firmware via
augmented process emulation. In 28th { USENIX} Security Symposium ({ USENIX }
Security 19). 1099-1114.

https://nvd.nist.gov/
https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://linux-test-project.github.io
https://www.kernel.org/doc/html/latest/security/lsm.html
https://www.kernel.org/doc/html/latest/security/lsm.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ReleaseNotes.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ReleaseNotes.html
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller

	Abstract
	1 Introduction
	2 A Study on KACVs
	3 Methodology
	3.1 Overview of ACHyb
	3.2 Static Analysis
	3.3 Dynamic Analysis
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Research Questions
	4.3 RQ1: Detection Precision
	4.4 RQ2: Detection Efficiency
	4.5 RQ3: New KACVs

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

