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ABSTRACT
Computational characteristics of a program can potentially be used
to identify malicious programs from benign ones. However, sys-
tematically evaluating malware detection techniques, especially when
malware samples are hard to run correctly and can adapt their com-
putational characteristics, is a hard problem.

We introduce Morpheus – a benchmarking tool that includes
both real mobile malware and a synthetic malware generator that
can be configured to generate a computationally diverse malware
sample-set – as a tool to evaluate computational signatures based
malware detection. Morpheus also includes a set of computation-
ally diverse benign applications that can be used to repackage mal-
ware into, along with a recorded trace of over 1 hour long realistic
human usage for each app that can be used to replay both benign
and malicious executions.

The current Morpheus prototype targets Android applications
and malware samples. Using Morpheus, we quantify the compu-
tational diversity in malware behavior and expose opportunities for
dynamic analyses that can detect mobile malware. Specifically, the
use of obfuscation and encryption to thwart static analyses causes
the malicious execution to be more distinctive – a potential oppor-
tunity for detection. We also present potential challenges, specif-
ically, minimizing false positives that can arise due to diversity of
benign executions.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

Keywords
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1. INTRODUCTION
Mobile applications turn sensitive information – financial, busi-

ness, location, health, among others – into compelling functional-
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ity for users. Unfortunately, the mobile ecosystem draws hordes of
malware developers who exploit sensitive data and paid services for
profit. Kaspersky, an IT security company, detected 100,000 new
malicious programs in 2013, up from 40,059 in 2012 [10]. Further,
Kaspersky reports finding approximately 4M benign “apps” em-
bedded with malicious payloads to generate more than 10M mali-
cious applications in 2012-2013. Desktop anti-viruses are ineffec-
tive and energy inefficient for mobile platforms, and detecting and
eliminating malware on mobile devices remains a major problem.

We consider the potential use of a program’s computational char-
acteristics to detect malware. The system we consider has two syn-
ergistic components. On the server side, a platform provider (e.g.,
Google) creates a database of computational signatures by execut-
ing applications and measuring hardware performance counters,
and attaches the signature to each application in the app-store. On
client devices, a light-weight system service samples performance
counters to create run-time traces from applications, and compares
them to the signature database either on the device or the server.
Note that the signature database can contain either a blacklist (of
malware executions [23]) or a whitelist (of benign executions). In
case malware is detected, the system raises a signal to alert the user
and/or the system. The server will further refine its compute signa-
ture database using traces uploaded by clients.

Evaluating computational characteristics based defenses against
mobile malware is extremely challenging. One reason is that mal-
ware samples available online seldom work correctly – their com-
mand and control servers are not functional; they were targeted
for an older, vulnerable platform; they run only in specific geo-
graphical areas; or that the malicious payload is triggered only as
a response to specific user actions – and experiments with malware
require care to establish that malware did execute in a realistic man-
ner.

Further, malware developers can adapt their programs to pro-
posed defenses. Malware is often repackaged into popular appli-
cations and choosing an appropriate baseline application can hide
the malware’s compute or networking activity better. Malware can
even adapt its payload to change its signature and avoid detection.

In this paper, we present Morpheus – a tool to help conduct com-
putational signature based research studies. Morpheus comprises
of a malware benchmark suite that includes both real malware sam-
ples and a set of configurably diverse, synthetic malware samples.
We first extend prior surveys of mobile malware to characterize
malware behaviors. We then select a representative set of real mal-
ware, reverse-engineer them, and complete their server-side func-
tionality. Finally, we construct a tool that allows a researcher to



choose from a list of malicious behaviors, specify detailed param-
eters specific to each behavior, select obfuscation techniques in-
cluding the baseline application to be repackaged into, and auto-
matically synthesizes a set of computationally diverse, repackaged,
obfuscated malware samples.

2. UNDERSTANDING MOBILE MALWARE
Mobile malware is qualitatively different from desktop variants.

The same-origin policy and permissions architecture implemented
in mobile platforms motivates malware to gain privileges by asking
for and abusing permissions. Malware spreads primarily through
repackaged apps in third party app-stores and through phishing
scams, and covers behaviors from stealing information to conduct-
ing network fraud. In this section, we present key insights gained
from studying existing malware samples that guide the design of
Morpheus.

We analyzed 53 malware families from 2012 and 19 from 2013
– a total of 175 malware samples in 72 families – downloaded from
public malware repositories [2, 8]. Our study extends prior work
– the malware genome project [37] – that analyzed over 1000 mal-
ware samples to trace their families, origins, and behaviors.

Our goal is to identify knobs to change the computational behav-
ior of malware and to determine concrete values for these knobs
(e.g., amount and rate of data stolen). Malware samples from the
NCSU dataset don’t reliably execute on current Android machines,
so we chose to fix a small set of representative malware samples
and then construct malware that we can run reliably and adapt pre-
cisely.

To study malware behavior, we disassembled the binaries (APKs
on Android) and executed them on both an Android development
board and the Android emulator to monitor a) permissions requested
by the application, b) middleware-level events (such as the launch
of Intents and Services), c) system calls, d) network traffic, and
e) descriptions of malware samples from the malware repositories.
We describe our key inferences below.

Analyze payloads instead of exploits. We found that most mo-
bile malware families achieve their end goals by getting users to
install overprivileged applications [25, 37] instead of through root
exploits [12, 5, 4]. We observed root exploits in 10/143 samples in
2012 and 3/32 samples in 2013. To become over-privileged, mal-
ware comes as payload that is repackaged into popular benign ap-
plications and then distributed through third-party app-stores. This
corroborates the NCSU dataset [37], which found 86% of malware
to be repackaged.

Malware behaviors. At a high level we assigned every mali-
cious payload to one or more of three behaviors: information steal-
ers, networked nodes, and computational nodes.

Information stealers look for sensitive data and upload it to the
server. User-specific sensitive data includes contacts, SMSs, emails,
photos, videos, and application-specific data such as browser his-
tory and usernames, among others. Device-specific sensitive data
includes identifiers – IMEI, IMSI, ISDN – and hardware and net-
work information. The volume of data ranges from photos and
videos at the high end (stolen either from the SD card or recorded
via a surveillance app) to SMSs and device IDs on the low end.

The second category of malicious apps requires compromised
devices to act as nodes in a network (e.g., a botnet). Networked
nodes can send SMSs to premium numbers and block the owner
of the phone from receiving a payment confirmation. Malware can
also download files such as other applications in order to raise the

ranking of a particular malicious app. Click fraud apps click on a
specific web links to optimize search engine results for a target.

We anticipate a new category of malware that uses mobile de-
vices as compute nodes, specifically mobile counterparts of desk-
top malware that runs password crackers or bitcoin miners on com-
promised machines. Over last couple months, several malware
samples mining crypto currencies have been detected. We expect
more mobile miners come to the foreground as devices get multiple
CPUs and more memory (DRAM and Flash). Hence, we use pass-
word crackers as a plausible choice for compute-oriented malware.

3. BASELINE: REVERSE ENGINEERING
REAL MALWARE

In this section, we present experiments with real malware sam-
ples and discuss issues with running them in a controlled environ-
ment. Based on our malware classification, we include in Mor-
pheus at least one representative sample from each malware cate-
gory.

3.1 Infostealers
For our experiments we chose two popular families that pack

several malicious features: Trojan-Spy.AndroidOS.Geinimi.a1 and
Backdoor.AndroidOS. Sinpon.a2. Neither of these samples run un-
modified. The malware samples check the runtime environment
used to execute Android apps (e.g., geographic location and other
IDs) to detect whether a malware is executed within an emulator or
in a geographic region where it is not supposed to work – implying
that someone is trying to reverse engineer the malware-ridden ap-
plication. If something suspicious is detected, the malicious pay-
load is not executed and the underlying application operates nor-
mally.

Geinimi. We found a Geinimi.a sample embedded within a repack-
aged version of the computationally intensive game MonkeyJump2.
Geinimi.a is a complex and heavily obfuscated malware family.
Besides employing obfuscation it also encrypts almost all strings
and uses Java reflection for dynamic method invocation – all fea-
tures to impede reverse-engineering of Geinimi.a. The Geinimi.a
malware mainly focuses on stealing personal information, but also
posseses the capability to install more malicious apps (attempting
root exploits or using phishing).

Analysis of the network traffic generated by the sample showed
that its server Command&Control (C&C) is no longer functional.
The Geinimi.a sample tried to connect to the C&C server every 5
min to check whether or not to issue any commands on the host
system. Since we did not observe any replies from C&C server,
we wrote our own C&C server and added instrumentation code to
make sure that malicious payload is actually issued. All communi-
cation with Geinimi.a malware is encrypted using 52-DES with a
hardcoded key 0x0102030405060708.

The interesting feature of Geinimi.a is that it splits all incom-
ing commands (e.g. app installation, stealing contacts/sms, access-
ing phone IDs and etc) in one of the two groups. Semantically,
the groups are almost identical, but their internal implementation is
different. It is worth noting that some of them are not completely
implemented. For example, the first implementation of app instal-
lation functionality works only on rooted devices, thus it is able to
install an app without asking for the owner’s approval. The other

1Geinimi MD5 e0106a0f1e687834ad3c91e599ace1be
2Sinpon MD5 d4a557ec086e52c443bde1b8ace51739



implementation shows a pop-up message asking a user to approve
to approve installation of a new apk. We exercised 9 commands of
one type; for 8 of these commands the difference in their imple-
mentation is negligible and thus insignificant for our experiments.
The last command, downloading and installation of an app, is im-
plemented differently across these two groups, but only one version
works reliably.

When first running the app infected by Geinimi.a, when the mal-
ware would try to access the cellular network location service it
would crash. The lack of this hardware component on the Arndale
board and no hardware stub to spoof it caused the program to crash.
We replaced access to network service with access to the GPS ser-
vice.

The original code was able to extract all of the text messages, en-
crypt them, and write to an open Java socket, but not commit them.
To fix this partial execution, we augmented the malware to com-
mit text messages. When testing the 3rd party program installation
functionality, we observed that the malware failed silently because
it could not write to SD card (Android boots off the SDCard on the
Arndale board and an extra partition on the card was not made to
spoof it). We modified the code to store downloaded apk files in the
/data folder and automatically set the required permissions instead.
The above changes yielded a fully functional Geinimi.a sample.

Sinpon. The other infostealer we studied represents the Sinpon.a
malware family. It is capable of executing 20 different commands
from a C&C server and can send sensitive data back to the C&C
server. As in the previous case, C&C server did not appear to be
alive so we implemented our own C&C server that supported Sin-
pon.aâĂŹs protocol.

We found out that Sinpon.a does not run on Android 3.0 and
above because since Android 3.0 Google has prohibited establish-
ing network connection within the appâĂŹs main thread. Thus,
we had to modify Dalvik byte code in order to move networking
to a background thread and successfully execute Sinpon.a on An-
droid 4.2.1. We embedded Sinpon.a in three apps - Angry Birds,
Sana med. app and TuneInRadio - and ensured correct execution
of all 20 commands – "getContactInfo", "getMessagein", "Load-
File/data/IMG.JPG", "getInstalledApp" etc. – that it can accept
from its C&C server.

3.2 Networked node: Click Fraud
In this experiment we used the sample that is identified as Ad-

Ware.AndroidOS.FetGp.a3 by Kaspersky antivirus. The malware
pretends to be a Google Play app, but it does not do anything useful.
When a user launches the app, it shows only a white screen, and at
the same time it starts a background service that keeps running even
after the app is closed. The background service registers the mobile
device by contacting http://www.mobilefilmizle.com/ipzaman.php
and this server checks the device’s network configuration and if the
deviceâĂŹs IP address has changed. The service then sets a timer
to wakeup event every 2 minutes. When the application awakes,
it contacts the other server to retrieve a set of keywords which
are later entered into Google one-by-one. The malware opens the
search results for each query and scrapes the result page for links
containing a certain format to click them using JavaScript mouse
events. This allows the malware to click on advertising links, gener-
ating money for its developers. When testing the sample, we made
sure that its C&C server was alive by capturing network traffic and
instrumenting Dalvik bytecode to spoof the command on subse-
3Click fraud MD5 5b5f65e1d014dbb8e55602ed468cb5eb

quent calls.

3.3 Compute Node
Recently, we have found several mobile malware samples that

are able to mine cryptocurrencies [9]. However, we did not ob-
serve computationally intensive malware in the wild before paper
submission. Hence, we obtained a real password cracker4 from
Google Play store. The app uses brute-force search to break the
MD5 hash of a password. We injected the code into legal versions
of our benign application benchmark set.

4. SYNTHETIC MALWARE
Based on the analysis of a large set of Android malware samples,

we developed a highly customizable malware that not only simu-
lates the major categories of real malware, but also allows adjusting
its execution rate as well as its network-level activity.

We achieved high level of malware flexibility by allowing pa-
rameter specification in a configuration file. It determines malware
type, its intensity in terms of execution progress, the network-level
intensity in terms of data-packet sizes and interpacket delays. In all
cases, our malware communicates with a C&C server to report its
progress, upload data and confirm the completion of the individual
malicious actions.

Logically our malware can be represented as a hierarchical struc-
ture. It starts execution by launching a dispatcher service that loads
malware configuration and, based on the supplied parameters, launches
other services, which serve as local dispatchers managing malware
activities and synchronizing separate malware threads running con-
currently.

Even if we fix some malware parameters in our experiments to
avoid an explosion of the number of parameter settings, this is not a
limitation of our synthetic malware; those parameters can be easily
modified in a configuration file. The rest of this section describes
individual services in details.

4.1 Info Stealers
Contacts. Our implementation of a contact stealer depends on

two parameters: the number of contacts to extract and the delay.
The process of collecting information consists of issuing multiple
queries to different content providers. Delay specifies a time inter-
val between consecutive queries, and in our experiments we varied
it in the range 0 - 25 ms. 25 ms value adds approximately 1 sec per
an access to a contact.

The other parameter, the number of contacts to be uploaded to
a server, is meant to model the various amount of contacts stored
on the phones. We chose the values of this parameter based on
the concept of âĂIJcognitive limitâĂİ - the number of people with
whom one can maintain stable social relationships. The anthro-
pologists estimate âĂIJcognitive limitâĂİ to be in the range 150 -
290 [24], [28]. Statistical data show that an average mobile phone
user has approximately 150 contacts [13], [15].

We generated contacts programmatically using the census data
available online [14]. The length of people names was sampled
from a normal distribution with parameters based on [14]. In our
experiments, we varied the number of contacts to be stolen from 25
up to 250.

SMS. Analysis of real malware demonstrates that there exist two
types of SMS stealers: batch stealers and active listeners (e.g. bank

4MD5 b7f53ff767e130758a6375315e62e82a



trojans). The former upload all text messages to their C&C server,
and the latter intercepts only some types of incoming text mes-
sages. We implemented both types of SMS stealers. As in the pre-
vious case, the phones storing different number of text messages
are modeled by specifying how many messages to upload to the
C&C server. We chose this parameter based on multiple studies of
phone users’ behavior [16], [17]. The college students send 2000
messages per month on average. Thus, we varied this parameter in
the range 200 - 1700.

The other parameter, delay, slowdowns SMS stealing by sus-
pending the SMS stealer in multiple points. In the experiments,
we set the range of the delay parameter as 0 - 40 ms; the latter
value adds 0.3 sec delay per SMS access.

The second flavor of SMS stealer, active listener, registers an
Android listener, which must be supplied with the list of phone
numbers and/or key words to search. If an SMS comes from a
number in the list or its body contains one or more specified key
words, it is intercepted. It is also possible to specify whether to
upload intercepted messages to a server and/or remove them from
the phone.

Location. There exist two ways of obtaining location: to get
approximate location based on information available from cellular
towers or get absolute coordinates using GPS module. We imple-
mented both methods; if GPS is disabled, then approximate loca-
tion is used. Our malware registers an Android listener to receive
location updates. Obtaining location programmatically does not
result in significant performance overhead because the last saved
location is returned without accessing Android run-time environ-
ment. To slow down this, we can specify a corresponding delay.

File operations. Our malware can perform all basic file opera-
tions in response to commands received from C&C server. For ex-
ample, the malware is able to download a file from a remote server
and save it on an SD card. It can send directory content to the
C&C server. After processing the directory listing, C&C server
may request to upload a particular file. When uploading a file to
the server, malware can read it at once or in chunks (the mode as
well as chunk size are specified by C&C server). Between reading
individual chunks of data or individual files and uploading them to
the server, malware can pause itself for a predefined amount of time
specified in the request.

Phone IDs and other info. We extract the broad set of avail-
able phone identifiers by accessing members of the static class an-
droid.os.Build: IMEI, several hardware ids, OS type etc. As in the
previous case, the workload is negligible when measured through
performance counters. In addition, our malware can extract the
other types of sensitive data: information on installed apps, browser
history and bookmarks.

4.2 Net node
Click fraud. Click fraud has become one of the most popu-

lar ways of generating revenue out of having free computational
resources. Cybercriminals gather compromised hosts into botnets
and make them click on the links located on the websites affiliated
with attackers [20], [34]. The number of fraudulent clicks may
reach 14% of the overall number of clicks on the Internet [6], [29].

The overhead incurred by click fraud mainly comes from fetch-
ing numerous webpages. Our click fraud implementation periodi-
cally accesses webpages specified in the supplied configuration file.
To vary CPU workload across a wide range, we parallelized our al-
gorithm, i.e. two threads fetches webpages concurrently.

In our experiments, we chose 20 URLs from the list of most
popular websites [1] and varied the following two parameters: the
total number of fetched webpages in the range from 20 up to 300,
and the delay between the successive page accesses in the range 0
- 3 sec. The parameters were chosen based on the observation of
the CPU activity when running our click fraud engine as a stan-
dalone process. The most intensive version of click fraud resulted
in 30-36% CPU utilization, on the other extreme benign parameter
settings consumed only 4-8% of CPU.

DDoS. The US-based DDoS protection company, Prolexic Tech-
nologies, has reported the growing number of mobile-based DDoS
attacks [11]. It discovered that mobile devices participated in a
large-scale multi-vector DDoS campaign in Q4 2013. The hand-
sets were running either AnDOSid app or Low Orbit Canon (LOIC)
app. Another anti-virus company, Dr. Web, detected in December,
2012 an Android malware [18] mounting DDoS attacks.

80% of DDoS attacks have been found to be performed using
HTTP [26]. Thus, we implemented two HTTP level attacks: GET
flood and slow-bandwidth attack (Slowloris [30]). The former at-
tack sends a series of GET requests to a supplied list of webservers
in the configuration file and waits for their responses. In compar-
ison with GET flood, Slowloris requires much less computational
resources and it is more favorable for mobile devices.

Low-bandwidth attacks try to exhaust server pool of available
connections by opening numerous connections and sending data
very slowly to keep connections alive. In our experiments, we
opened 500 connections and specified 500 sec timeout. If some
connections fail, we reopen them to keep the constant number of
active connections. As a target host, we chose www.android.com.
We conducted 4 experiments by varying the delay between opening
consecutive connections from 1 ms up to 200 ms. To guarantee that
the server does not close connections, our malware transmits small
amount of data over established connections every second.

4.3 Compute node.
Computational workload comes in two flavors: brute-forcing SHA1

hashes and multiplying random matrices. Both activities let C&C
server specify internal delay as well as parameters of the objects
used in the computations. In the case of SHA1, C&C should spec-
ify the number of parallel threads, the maximum length of the orig-
inal string, the maximum number of iterations and delay between
consecutive iterations. In the case of matrix multiplication, the
sizes of matrices and delay are defined by C&C sever.

4.4 Reflection and encryption
To hamper reverse-engineering, Android malware invokes Java

methods through Java Reflection API and also encrypts all strings
in the code. The use of reflection mechanism may lead to the ap-
pearance of extra strings in the code, this is why string encryption
should accompany reflection. We implemented second versions of
each malware that uses Java reflection and string encryption in the
same way as the Geinimi.a sample [33].

5. EXPERIMENTAL SETUP
To study the impact of malware on the underlying apps, we se-

lected 9 applications based on the diversity of their high-level be-
havior: computationally intensive, user-driven, and network-oriented.
The chosen benign apps are: Firefox, Google Translate, Sana (med-
ical app), TuneInRadio, Google Maps, Angry Birds, Zombie World
War, CNN and Amazon. Morpheus currently includes 7 synthetic



Figure 1: Firefox: instructions executed (different malware parameter settings).

Figure 2: Firefox: indirect branches (different malware parameter settings).

Figure 3: Firefox: load/store instructions (different malware parameter settings).

Figure 4: MonkeyJump2 vs MonkeyJump2 + Geinimi.a (real malware experiment).

malware families from the three high-level behaviors (66 malware
samples including different parameter values) inserted into all 9 be-
nign apps. Additionally, we repeated each experiment to study the
effect of invoking methods through Java reflection and encrypting
strings. We recorded 7.5 min long execution traces per configu-
ration of synthetic malware and for each underlying benign app.
Every execution trace is a collection of 7 performance counter time
series.

In our experiments, we used two development boards: Samsung
Exynos 5250 and TI OMAP 5430; each of them was running An-
droid 4.2.1. The results are reported only for Exynos 5250 board.
Automation of user events, when recording performance counter
traces, was achieved by using the Android Reran tool [3] to re-
play the real user actions multiple times. Actual trace collection
was done by ARM DS-5 v5.15 framework equipped with Stream-
line profiler, which is able to match OS-level events (e.g. context
switches) with performance counter data.

We characterized app dynamic behavior by observing the follow-
ing process-specific counters: the total number of executed instruc-
tions, the number of integer instructions, the number of direct and
indirect branches, the number of load/store instructions and cycles.
The only counter that was not process-specific that we used was the
number of mispredicted branches.

We checked that synthetic malware executed correctly, includ-
ing log messages produced by the Android middleware, incom-
ing/outgoing network traffic generated by the board, markers sent
to DS-5 tool, and responses sent to the C&C server (Hercules_3-
2-6 TCP server in our experiments). In the case of real malware,
we developed our own HTTP server supporting the custom proto-
col hardcoded in the malware. We instrumented both synthetic and
real malware to make them report their actions both to adb con-
sole and to the DS-5 framework in order to synchronize high-level
activities with performance counter traces.



6. EXPERIMENTAL RESULTS
To visualize malware impact on benign apps, we selected Fire-

fox, which serves as an underlying benign app for repackaging pur-
poses. Firefox is able to exhibit large variety of dynamic behaviors
that covers all categories of our Android app classification. It be-
haves as computationally intensive app when running flash, it is
similar to network intensive apps when streaming video, and even-
tually one can turn it into a user-driven app by reading news. We
also chose 2 malware families (photo and SMS stealers) from infor-
mation stealer category, one family (click fraud) from network node
category, and the last malware family (md5 hash cracker) from the
computational malware category.

Our experiments show that malware payload does affect perfor-
mance counter traces, and that malware that uses reflection with
string encryption makes hardware level analyses potentially easier
even though it makes static analyses harder. At the same time, we
demonstrate that baseline applications have very diverse behaviors
and this can lead to false positives – proposed detection techniques
should be designed carefully to minimize these.

6.1 Payload Parameters Affect Performance
Counter Traces

Figures 1, 2, 3 shows the impact of 4 synthetic malware families
on Firefox. The black line represents the underlying benign app’s
behavior. Within each malware family, we selected three config-
urations representing extreme values of the parameters controlling
malware intensity and the size of malicious workload. The blue
curve corresponds to the light malicious workload without artifi-
cial delays. The red line belongs to the malware that executed the
largest workload in our experiments with no delays. In terms of
malware intensity, i.e. the numbers of malicious operations exe-
cuted per unit of time, both lines represent equally intensive mal-
ware samples. And finally the least intensive malware, carrying out
the largest amount of work at the same time, is presented by the
green curve.

All experiments involve the same sequence of user actions – we
included browsing of the most popular websites (e.g. cnn.com, ny-
times.com, google.finance etc) and streaming video on some web-
sites (e.g. cnn.com). The curves shown on the plots are smoothed
over a 30s window to highlight common trends.

In all experiments, malware starts its execution at a random mo-
ment within a time interval 15-45 sec. And it remains active from a
few dozens of seconds up to several hundreds of seconds. The por-
tion of a curve that corresponds to malicious activity is highlighted
by thicker lines.

Analyzing the plots, we can easily notice that the impact of mal-
ware on performance counters depends not only on the intensity of
malware, but also on the total amount of work malware carries out.
However, intensity factor dominates. The initial part of the curves
on a plot looks very much similar while malware remains dormant.
As soon as it starts execution, the curve diverges from the benign
one more and more.

Another interesting observation is that even after malware termi-
nation, there are still some residual effects, i.e. it takes time for the
corresponding curve to resume following the original benign curve.
Such residual effects likely come from the nature of the managed
languages, i.e. malware affects the state of Dalvik virtual machine
(VM). Relaxation time needs to pass before disturbance of Dalvik
VM state disappears.

Further, it is not easy to predict the amount of disturbance a par-

ticular malware can cause. We plotted two similar malware types:
photo and SMS stealer. In our experiments, the average photo size
is about 4.5M, the average size of a text message is 51 symbols.
If we compare impact of the most intensive SMS stealer with the
impact of the most intensive photo stealer (red curves), we easily
notice that stealing text messages is more noticeable process on the
micro-architectural level. However, stealing 50 photos results in
transmission of 225 Mb, and stealing 1700 sms messages leads to
uploading 85 Kb data. The difference comes from the architec-
ture of Android OS. To access just one text message requires issu-
ing multiple queries to the corresponding content provider, while
a photo as any other file can be accessed directly using the corre-
sponding Java API.

If we estimate large-scale malware effects, we notice that mal-
ware mostly shifts the observed traces: it increases the amplitude,
but only very intensive malware may change the way the traces
look like. Some variations of the presented curves should be at-
tributed to the constantly changing layout of the webpages. Thus,
the same sequence of user actions might cause rendering slightly
different webpages. However, such variations do not change the
overall picture.

Finally, we illustrate Geinimi.a’s impact (Fig. 4) on the under-
lying MonkeyJump2 game. Some malicious activities (e.g. app in-
stallation) drammatically changes the performance counter traces,
while the rest remain unnoticeable (e.g. stealing phone IDs).

6.2 Java Reflection Potentially Eases Detection
When experimenting with synthetic malware augmented with re-

flection and string encryption, we discovered that reflection and ac-
companying it encryption make malware much more visible at the
micro-architectural level (Fig. 5). We present results for Angry-
Birds, not for Firefox because Android Reran had trouble adapt-
ing to webpage layout changes due to appearance of ad in random
spots.

We see that even the least intensive malware in our collection sig-
nificantly increases the intensity of micro-architectural events and
makes the gap between benign and malicious traces wider. As we
mentioned before, traces coincide (in this case, they are perfectly
aligned), while malware has not started its execution. The large
spike on the two traces results from displaying flash-based ad, thus
they should be excluded from consideration.

Reflection leads to performance overhead because of the exten-
sive use of dynamically resolved types in the code. This prevents
VM from performing some optimizations, and thus increasing CPU
workload [7]. Reflection and string encryption lead us to conclude
that analysis of CPU activity may reveal information that is hidden
from static code analysis tools.

6.3 Diversity of Benign Traces May Cause False
Positives

Besides analyzing malware impact on benign traces, we compare
micro-architectural fingerprints of benign applications belonging to
different categories of our classification. To illustrate what we dis-
covered we plot traces corresponding to the different runs of the
following benign apps: Firefox and Zombie World War (Figures
6, 7). Surprisingly, the latter app demonstrates the steadiest behav-
ior. To double check this observation, we compared traces of other
computationally intensive apps and we saw the same trend. This
can be explained as follows: user interactions do not significantly
change the amount of work the app executes in the background



Figure 5: AngryBirds: malware vs malware + reflection & encryption (effects of malware obfuscation).

Figure 6: Firefox: diversity of benign traces (potential source of false positives).

Figure 7: ZombieWorldWar benign: diversity of benign traces (potential source of false positives).

when doing rendering and carrying out other game-related activ-
ities. Micro-architectural traces of the browser app, Firefox, are
more event-sensitive: we see large spikes resulting from the input
events.

This experiment highlights the fact that micro-architectural be-
havior of applications may change in a broad range depending on
user input. Such poorly predictable changes could lead to the high
level of false positives in the systems that try to detect malware
observing performance counters.

7. RELATED WORK
Performance counters. Performance counters not only allow

non-intrusive monitoring of applications performance, but also may
help to deduce some high-level information. Ammons et al. [19]
demonstrate an approach to flow sensitive profiling, which estab-
lishes correspondence between hardware performance metric and
individual execution paths. Azimi et al. [21] build a system for
run-time analysis of applications’ performance using performance
counters. Bare et al. [22] investigate possibilities for performance
analysis in distributed systems. SimPoint project [31], [32] intro-
duces a notion of execution phases and demonstrates different ways
to identify them: one of the possibilities is to use PMU.

Native code. CFIMon [35] enforces control-flow integrity using
performance counters along with binary code analysis. Malone et
al. [27] show how to accomplish static and dynamic code integrity
checking using PMU. They fit linear models to PMU data and at-
tach model description to the corresponding files. Yuan et al. [36]
apply PMU to the detection of common control-flow hijacking at-
tacks.

Android. In comparison with desktop operating systems, An-
droid adds extra level of complexity by running apps within a Dalvik
virtual machine (VM). Zhou et al. [37] comprehensively analyzed
Android malware, and they found that most malware samples (86%
out of 1,200 samples) in their dataset were repackaged versions of
benign apps. Demme et al. [23] postulate the possibility of us-
ing performance counters for detection of known Android malware
families.

8. CONCLUSIONS
Most Android malware samples are repackaged version of the

benign apps. Thus, when evaluating detection schemes, one needs
to estimate their true and false positive rates by testing them on
the underlying benign apps, and not only on random benign apps.
Also, we propose to go one step further and include malware pay-



load adaptations to test such detection methods. In this paper, we
propose a tool to evaluate the robustness of hardware based ap-
proaches for malware detection and we show that easy changes to
malware intensity or implementation, while maintaining the same
semantics, may significantly affect micro-architectural traces.
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