
LAPD: Lifecycle-Aware Power-Based
Malware Detection

Alexander Cathis, Mulong Luo, Mohit Tiwari, and Andreas Gerstlauer
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, USA

Email: {alexander.cathis, mulong, tiwari, gerstl}@utexas.edu

Abstract—Behavioral malware detectors that analyze power
traces have proven to be a promising defense to secure low-
complexity embedded systems. However, recent work shows that
this approach struggles in more challenging contexts with multi-
core processors, multithreaded software, and inherently stealthy
or deliberately evasive attacks. These detectors consider the
execution of an attack to be a single detection event, whereas real-
world malware requires a lifecycle of sequential stages to prime
an attack, execute, and perform post-exploit actions. In this work,
we augment traditional detectors with a lifecycle-aware backend
to collate detection events, generate more informed detection
decisions, and thus significantly improve detection performance.
Our lifecycle-aware detector is implemented via a hidden Markov
model trained on general attack lifecycles. Leveraging signals
across lifecycle stages, this approach enables detection of attacks
even if certain stages are missed by a traditional detector.

We evaluate this framework on an 8-core embedded-class Intel
Xeon platform running drone-based workloads, using board-
level power measurements. When tested against attack lifecycles
derived from the MITRE ATT&CK matrix, our lifecycle-aware
detector is able to achieve an ROC-AUC score of 0.98 on
baseline attack lifecycles. Furthermore, it achieves a score of
0.70 on attack lifecycle specifications that a baseline density-
based detector completely fails to detect, due to it’s vulnerability
to simple attack stalling strategies.

Index Terms—attack lifecycle, attack killchain, malware detec-
tion, power side-channel

I. INTRODUCTION

Information leakage through physical side channels, such
as electromagnetic emissions or power consumption, has been
exploited by attackers to exfiltrate data and compromise
computer systems [1–5]. However, side channels can also
be leveraged defensively. By characterizing a system during
normal operation, side channel-based malware detectors can
identify anomalous behavior. These out-of-band detectors of-
fer significant advantages over traditional in-band software-
based detection methods. Because they operate externally, a
compromised application or operating system (OS) cannot
undermine the detector. Moreover, these detectors are non-
intrusive, requiring no modifications to existing hardware or
software, even as new attack vectors emerge. These features
are particularly critical for embedded systems, which are often
resource-constrained, have long lifetimes, and typically lack
in-field update capabilities.

This work was supported in part by ACE, one of the seven centers in
JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA.

Power-based malware detectors for embedded systems have
garnered significant interest due to their cost-effectiveness and
ease of deployment [6–10]. However, recent work has shown
that existing approaches are often limited to simple systems
relying on suboptimal machine learning (ML) techniques,
thus performing poorly in noisy deployment contexts, such
as on complex multi-core platforms running multi-tasking
workloads [11]. The authors proposed a novel state-based
ensemble detector that outperformed prior work in such de-
ployment scenarios. However, their approach still failed to
detect relatively stealthy or deliberately evasive attacks.

All prior studies focus solely on detecting a single, typically
the execution phase of a larger attack lifecycle, neglecting
other critical stages. Real-world attacks involve multiple stages
within an attack lifecycle, designed to prime exploit execution
and maximize post-execution persistence and reward. The
MITRE ATT&CK® matrix [12] is widely used to categorize
attack lifecycles, their sequential stages, and the associated
actions or tactics, techniques, and procedures (TTPs). Prior
works predominantly focus on the execution stage, as the sur-
rounding stages generally have lower computational demands
and thus produce a smaller power footprint. However, even
the execution stage can have low overhead or hide behind
other system noise. At the same time, knowledge of an attack’s
lifecycle can enhance detection confidence by contextualizing
detections within the broader attack framework, rather than
isolating individual actions or TTPs.

We propose a novel lifecycle-aware power-based malware
detection (LAPD) framework designed to enhance perfor-
mance against inherently stealthy attacks and evasive attack
lifecycles. To the best of our knowledge, no prior power-based
malware detector has incorporated such lifecycle awareness.
Our framework integrates a traditional power-based detector,
as used in prior works, with an LAPD backend combining a
lightweight tree-based attack classifier with a hidden Markov
model (HMM). The classifier categorizes malicious windows
identified by the front-end detector into common actions cor-
responding to attack lifecycle stages. Subsequently, the HMM
evaluates the observed sequence of actions, scoring them based
on their likelihood of representing a genuine attack.

Our contributions in this paper are as follows:
1) We present a novel lifecycle-aware side-channel malware

detector that enhances the performance of established de-
tectors by classifying malicious actions and incorporating
the likelihood of various attack sequences and strategies.

2) We evaluate the detector against multistage attacks inspired
by the MITRE ATT&CK matrix, encompassing microar-
chitecture, software, network, and external device attack
actions. Our LA detector is able to achieve an ROC-AUC
score of 0.98 on baseline attack lifecycles and a score
of 0.70 on attack lifecycle specifications that a baseline
density-based detector completely fails to detect.

3) We analyze the performance of our LA detector and discuss
critical considerations for future implementations.

The rest of the paper is organized as follows, in Section II,
we introduce related work, in Section III, we give an overview
of the LAPD system, in Section IV, we explain in detail the
LAPD backend architecture, in Section V, we describe the
experiments and results, in Section VI, we summarize this
paper and discuss future directions.

II. RELATED WORK

Power Side-Channel Based Malware Detection. Power side-
channel is a very effective method for malware detection
across different platforms. It has been demonstrated on micro-
controllers [6, 10, 13–16], mobile devices [7, 9, 17–20], as
well as on desktop computers [8, 21–24]. Depending on how
these power are measured, power-based malware detection can
be classified as in-band and out-of-band. In-band detection
has been demonstrated in [9, 18] on smart phones. One of
the limitations of the in-band detection is that the system
is subject to the same threats similar to other software- and
hardware-based defenses. This is because an attacker that has
compromised the system will be able to access their in-band
measurement directly and disable these in-band detectors. Out-
of band detection, on the other hand, acquire the power traces
outside the system, thus it will be able to detect the malware
even if the system is already compromised. It has been demon-
strated in SCADA systems [25], software-defined radios [26],
and microcontroller units (MCU)[13]. For example, [13] take
fine-grain power measurements to track code execution of an
MCU. They use an HMM to recover the most likely executed
instruction sequence and can detect a single instruction change.
However, all of these out-of-band detections are limited to
simple embedded microcontroller setups assuming single core
or single task in a multicore system.
Aggregation of Measurements. To improve the detection
accuracy, the measurements can be aggregated. Depending
on the source of measurement, it can be either spatially
aggregated or temporal aggregated. For spatial aggregation,
[27, 28] form a graph to aggregate enterprise-level network
data from multiple spatial sources. For temporal aggregation,
there are density-based approaches, which compose a new
user-level score from some sample of recent window-based
detector scores. This work demonstrates that the density-based
detectors can be easily evaded by interleaving benign actions
with malicious actions.

[29] employ a bag-of-words scheme, where individual time
windows are treated as words and larger time-to-detect win-
dows as bags. An alarm is raised if a bag appears excessively
anomalous. Similarly, [30] use a larger sliding window over

smaller window samples. Our experimental results demon-
strate that such density-based approaches can be evaded in the
power domain by interleaving benign actions with malicious
actions.

In contrast, our lifecycle-aware detector leverages temporal
aggregation and an HMM to capture the causal relationships
between different measurements, rather than relying on simple
aggregation.
MITRE ATT&CK and Attack Lifecyles. The MITRE
ATT&CK framework is a valuable tool for characterizing at-
tack lifecycles. Many attacks can be mapped to ATT&CK [31–
33] using machine learning techniques. General knowledge
bases of attack lifecycles, including those for generic and
IoT malware, are provided by [12, 34]. The framework has
also been applied to vulnerability identification [33] and risk
assessment [32].

Earlier work on lifecycle-aware malware classification and
analysis was introduced in the context of network intrusion
detection [35]. Additionally, it has been used for taint-tracking
in Android applications [36]. Several SoK and measurement
papers have characterized the applications, use cases, and
limitations of ATT&CK [37–39].

Prior works also utilize finite state machines and HMMs
to detect sequences of attack or intrusion behavior [40–44].
However, these detectors rely on explicit signals, such as
system call traces or host states, rather than power side-
channels. Furthermore, their detection scope is narrower, fo-
cusing on specific intrusion patterns rather than generalized
attack lifecycles.

To our knowledge, no prior work has proposed or analyzed a
detection approach that leverages the MITRE ATT&CK frame-
work in the context of out-of-band power-based detectors.
This paper is the first to systematically design and evaluate
a lifecycle-aware malware detection approach for this context.

III. SYSTEM OVERVIEW

We first describe our threat model and deployment scenario
and then provide an overview of our LAPD framework.

A. Threat Model and Deployment Scenario

We consider a scenario where a multi-core system concur-
rently runs multiple potentially multi-threaded embedded ap-
plications, such as autonomous drones [45]. At the beginning,
the system is not compromised. The goal of the attacker is
to deploy a malware that compromises the system through
a chain of actions. For example, the attacker may do an
SSH access to gain initial access of the system, then the
malware can do a priviledge escalation to gain access to critical
information, then perform exfiltration.

LAPD aims to detect such attacks, using an out-of-band
detector, physically separated from the target system, sampling
power exclusively from external, board-level power supply
rails. This is similar to the power-based malware detector setup
in existing works such as [11], and it introduced no additional
overhead. LAPD can operate as software on a microcontroller
or a Raspberry Pi-class device, equipped with a current sensing

and analog-to-digital signal processing and conversion front-
end.

As LAPD operates out-of-band, its power readings cannot
be tampered with by any attacker within the monitored system.
We further assume that LAPD is deployed on a tamper-
resistant device. Apart from that, we model a strong adversary
with both network and physical access to the victim embedded
device. The attacker is assumed to be aware of LAPD’s
presence and actively motivated to evade it.

LAPD leverages attack lifecycles and assumes that a secu-
rity practitioner can configure it to model relevant scenarios. In
our evaluations, we configure LAPD to model attack lifecycles
based on the MITRE ATT&CK matrix. We assume this matrix
accurately reflects real-world attack scenarios.

Specifically, we treat the generalized stages of the MITRE
matrix as covering common malicious actions that adversaries
may employ. For instance, malware cannot simply appear on
a victim device. An attacker must first execute an injection
action to introduce new malware or an activation action to
trigger an existing trojan, both of which belong to the initial
access stage defined by the MITRE model.

We emphasize that the LAPD framework is not restricted
to the MITRE model; extensions, modifications, or alternative
lifecycle models can be seamlessly incorporated.

B. LAPD Framework Overview

Fig. 1 provides an overview of the LAPD framework
architecture. LAPD consists of two main parts: the front-end
black-box window detector, and the back-end lifecyle-aware
detector. Power samples extracted from the target system first
go through a sliding window extraction, and a black-box front-
end detector is used to score and filter out potential malicious
windows of power samples, which are then forwarded to
the lifecycle-aware detector. LAPD requires very little over-
head compared to a traditional out-of-band power-detector
implementation. Target device, power sampling, and black-box
detector all incur no overheads. In addition to Lifecycle-Aware
Detector, all that is needed is to pipe the front-end scores
to a window-forwarding function feeding the LA Detector.
Afterwards, an end-user can simply monitor the top level threat
score emited by the LA detector.

C. Black-Box Front-End Detector

We do not restrict the specific implementation of the front-
end detector. It is treated as a black box, which allows the
framework to incorporate any existing detector from prior
works, including newly developed ones. In this paper, we use
a detector that uses ensembles of one-class classifiers (OCCs),
which has demonstrated superior performance in complex de-
tection contexts involving parallel execution of multithreaded
software on advanced hardware. The key idea behind this
detector is to train each OCC on known benign combinations
of executing applications. If no OCC identifies a given window
as benign, the window is classified as malicious. This approach
eliminates the need for malware-specific training, enabling the
detection of zero-day attacks.

Detected

Malware Windows

Top Level

Threat Score
Lifecycle-Aware Detector

Sliding

Window

Extraction

Power Samples

Malware

Forward

Threshold

Window

Forwarding

Black-Box Detector

Target System

Power Supply

Power

Sampling

Power Delivery

Black-Box

Threat Score

Power

Samples

Power

Windows

Fig. 1: LAPD framework. Power sample windows are first
analyzed by a traditional black-box power-based detector.
Windows identified as malicious are then passed to the
lifecycle-aware detector, which generates a continuous threat
score reflecting the entire power trace.

IV. LAPD BACKEND ARCHITECTURE

The front-end Black-Box Detector takes sliding window
samples from the input power trace and outputs a malicious-
ness score for each window. The maliciousness score is used
to determine whether to forward a window to the backend
LA detector for further investigation. The output of LAPD is
a threat score that estimates the likelihood of a sequence of
windows representing a valid attack according to a lifecycle
model.

Figure 2 provides a detailed overview of the LAPD backend,
consisting of the Action Classifier, the Sequence Processor,
the Hidden Markov Model (HMM), and the Threat Score
Function. The Action Classifier categorizes malicious windows
into common actions associated with an attack lifecycle.
The Sequence Processor then processes these action classi-
fications, filtering them into a sequence of stage emissions.
Next, the HMM analyzes the stage emission sequence and
outputs a threat score reflecting its confidence that the input
sequence corresponds to a real attack. Finally, the Threat Score
Function integrates window classifications, processed emission
sequences, and the HMM score to produce a continuous, trace-
level threat score.

At its core, LAPD incorporates a classifier trained on
common attack actions and an HMM with encoded attack
flows through its start probabilities and transition weights. The
HMM assigns a high likelihood score when a sequence of
actions aligns with an expected attack flow and a lower score

Action Classifier Sequence Processor

HMM

Detected

Malware Windows

Window

Classifications

(a)

Processed

Emission

Sequences

(e)

Threat

Score

Lifecycle-Aware Detector

Threat Score Function

HMM

Score

(h)

𝑓(𝑎, 𝑒, ℎ)

Fig. 2: Detailed architecture of LAPD detector. Key compoents
include an Action Classifier, Sequence Processor, HMM, and
Threat Score Function.

when the sequence deviates from the attack lifecycle. This
lifecycle-aware detector offers three key advantages over prior
state-of-the-art detectors:
1) Sequence-awareness of an attack (e.g. cannot run exfil-

traion before initial access) is encoded into model weights
to reduce false positives.

2) Detection-awareness of attack actions is incorporated to
reduce false negatives, allowing the HMM to infer that
emission sequences with some missing actions are not
necessarily less malicious.

3) Time-agnostic analysis eliminates reliance on attack speed
or predefined time ranges for composing window predic-
tions, ensuring that an attacker stalling or spreading actions
over long periods of benign behavior does not lower the
chance of detection.

A. Action Classifier

The first component within the LAPD backend is the Action
Classifier, which categorizes windows labeled as malicious by
the front-end Black-Box detector into common actions within
an attack lifecycle. In our evaluations, we train an XGBoost
tree classifier on common actions defined by the MITRE
ATT&CK matrix, as listed in Table I.

The Action Classifier is a supervised model trained ex-
clusively on malicious actions. Exploring semi-supervised
classifiers capable of generalizing to other actions is left for
future work. However, note that the front-end malware detector
is trained solely on benign data, and the HMM weights are set
to provide robustness against misclassifications by the Action
Classifier. Furthermore, when classification confidence does
meet a user-set threshold, the classification is not forwarded to
the Sequence Analyzer. We found a threshold value Cclf conf =
0.85 to give reasonable results.

TABLE I: Attack Actions considered in this work. Actions
commonly observed in attack lifecycles form a core compo-
nent of the LAPD backend. These actions are used to train the
Action Classifier and are modeled as hidden state emissions
in the HMM formulation.

Action Description Abbr.
SSH SSH’s into system ssh
UFW UFW configuration chang ufw
External Device Insert external device into system fd
Enum Configuration Gather config files for

common applications and services
enum cfg

Enum System Gather system information enum sys
Enum Network Gather network information enum net
Meltdown Microarchitectural attack m
L1 Covert-Channel Microarchitectural attack cc
Spectre Microarchitectural attack s
Change Permissions Change permissions of files/logs perm
Rootkit Execute a rootkit rk
Delete Bash History Delete Bash History hist
Create Account Create a privileged account user
SCP Exfiltrate data via SCP scp

B. Sequence Analyzer

The Sequence Analyzer processes actions classified by the
Action Classifier, treating them as emissions for the HMM.
First, to reduce noise of misclassifications, the Sequence
Analyzer performs a filtering function on the action sequence,
deleting subsequences of identical actions if they are under
a user set length. In our experiments, we used the length
Cuniform subseq to be 2. Next, to better align with the problem
framing, the Sequence Processor replaces consecutive repeated
emissions with a single emission, as they are unlikely to
provide additional insight. Additionally, the Sequence Ana-
lyzer computes and stores emission subsequences, which are
later utilized by the Trace Memory function described in
Section IV-D.

C. HMM

We model the sequence of stages in an attack lifecycle
using a hidden Markov model (HMM). Lifecycle stages are
defined as hidden states, and actions are grouped as emissions
corresponding to their respective stages. Since each stages in
an attack may emit several actions which may not be unique,
the state and the corresponding probability cannot be directly
inferred by looking at the actions. For example, Figure 3b
shows, each state can correspond to several actions. However,
HMM is a tool for inferring the states in this case. An HMM
provides a natural and intuitive framework for attack lifecycle
detection. While the lifecycle-aware detector cannot directly
observe an attacker’s flow, it can infer the sequence based on
actions detected by the front-end classifier.

The HMM formulation is inherently tolerant to missed
detections. Weights can be configured to reduce, but not
eliminate, the warning signal in the event of a missed detec-
tion. Additionally, the framework does not require training on
every possible action. Undetected actions are simply treated as
absent. As long as the overall sequence aligns with an attack
lifecycle, the HMM-based lifecycle-aware detector remains

Initial

Access 𝑆1

Discovery Execution Persistence Exfiltration

𝐹1
𝐹2

𝐹3
𝐹4

𝐹5

𝐵2

𝐵3
𝐵4

𝐵5

𝑆2 𝑆3 𝑆4 𝑆5

(a) HMM states, start probabilities, and transition probabilities.
Start probabilities are labeled Si, forward transition probabilities
as Fi, and backward transition probabilities as Bi.

Initial

Access

Discovery Execution Persistence Exfiltration

enum cfg

enum sys

enum net

m

cc

s

perm

rk

hist

user

ssh

ufw

fd scp

(b) Action-to-emission and emission-to-state mapping. Actions are
grouped as a single emission exclusive to each state. Emission
weights are all set to 1.

Fig. 3: Lifecycle-aware HMM with weights based on
ATT&CK knowledge.

TABLE II: Attack lifecycle stages. The most critical and or
common stages inspired by ATT&CK and used for our LA
detector.

Stage Description
Initial Access Gain initial attacker foothold or malware

delivery within a victim device.
Discovery Actively or passively gather information

that can be used to support or enhance the attack.
Execution Utilize some exploit to execute

adversary-controlled code on victim device.
Persistence Perform post-exploit actions to escalate privileges,

evade detection, and persist within a victim.
Exfiltration A common key purpose of an attack;

to steal confidential data, typically over a network.

robust against detection gaps. This robustness is particularly
important for noisy detectors, which are common in power-
based detection systems. While both finite state machines
and HMMs have been used to detect specific exploits by
monitoring system calls, network information, and machine
state [40–44], noisy power signals and generalized attack
lifecycles make full detection coverage and performance un-
realistic. Recent studies demonstrate that even enterprise-wide
SIEM tools, which claim broad coverage of the ATT&CK
matrix, often fail to deliver on these claims [39].

Fig. 3a visualizes the states, start probabilities, and state
transition probabilities of the HMM used in our work. In our
implementation, we condensed the MITRE ATT&CK matrix
to focus on the most important stages present in almost all

attacks (Table II), and set the number of hidden HMM states
to n = 5. Start probabilities, denoted as Si for each state
i, are configured based on the end-user’s confidence in the
components preceding the HMM to detect the Initial Access
stage. Given the starting state probability S1, the subsequent
start probabilities can be set as follows:

Si = (1− s1) ·
(n− i) · cstart weight∑n
i=2(n− i) · cstart weight

, i ∈ [2, n]

We used cstart weight = 1.5 to control the start weight ratio
among states. An observed emission sequence beginning at
the execution stage implies that the preceding components may
have missed emissions from the Initial Access and Discovery
stages. Therefore, later stages are assigned lower start weights
compared to earlier stages.

The state transitions of the HMM are illustrated in Fig. 3a,
where forward transitions are shown as solid edges and
backward transitions as dotted edges. Self-edges are treated
as forward transitions, reflecting cases where an attacker may
attempt different actions within the same stage to advance
through the attack lifecycle.

The transition matrix produces a fully connected HMM.
While we make no assumptions about the relative likelihood
of specific attack flows, we consider forward transitions more
probable and consistent with the attack lifecycle than backward
transitions. Therefore, all forward outgoing edges within a
stage are weighted equally, as are all backward outgoing edges.
We prioritize forward transitions over backward transitions
using cFB ratio = 2 and compute forward Fi and backward
Bi edge weights for each state using:

Fi =
cFB ratio

(n+ 1− i) · cFB ratio + (i− 1)
, i ∈ [1, n]

Bi =
1

(n+ 1− i) · cFB ratio + (i− 1)
, i ∈ [2, n]

Fig. 3b illustrates the action-to-emission and emission-
to-hidden-state mappings in our HMM. Actions associated
with a given stage are grouped within purple dashed boxes
and mapped to a single emission for that stage. Initially,
we considered setting emission weights based on the detec-
tion performance of preceding components and introducing a
dummy emission to account for cases where no action was
detected. However, we later observed that, from an external
perspective, it is impossible to distinguish between a missed
emission and a skipped transition. For example, observing
an emission exclusive to state1 followed by an emission
exclusive to state3 does not reveal whether an emission from
state2 was missed or whether the hidden process transitioned
directly from state1 to state3. To address this ambiguity, we
simplify our model by assigning equal weights (set to 1) for
all emissions. In other words, the likelihood of missing an
emission from state2 and the likelihood of a direct transition
from state1 to state3 are combined into the transition weight
between state1 and state3.

The HMM returns a log likelihood from a given emission
sequence e of length T . We normalize this likelihood by the
sequence length and define the HMM score as:

fHMM = exp

[
1

T
log

(∑
X

P (e|X)P (X)

)]
where X represents all possible hidden node sequences, which
correspond to sequences of attack stages. Note that Fig. 3
illustrates one implementation of a lifecycle-aware HMM
based on the ATT&CK framework. Our approach is general
and can be adapted to other attack scenarios by modifying the
HMM to suit specific deployment and threat models.

D. Threat Score Function

The HMM score alone is insufficient for malware detection,
as it is overly sensitive to the length of the emission sequence.
Additionally, a subsequence’s HMM score is always greater
than or equal to that of its supersequence, regardless of
the HMM weight configuration. In other words, for a fixed-
length emission sequence e of length T , there is no sequence
e+ composed of T identical emissions and one subsequent
emission such that:

fHMM(e) < fHMM(e+)

To mitigate these limitations, we combine the HMM score with
two intuitive penalties to generate a top-level threat score.

First is the Duration Penalty. A trace with more detected
actions should be considered more suspicious. Thus, with
an emission sequence e of length T emitted by the Action
Classifier and a duration penalty constant Cduration (set to
Cduration = 500 in our work), we define a duration score fduration
as:

fduration(e) = len(e) · Cduration

Next, we incorporate a Forward Propagation Penalty. For
a given emission sequence, we evaluate how many forward
transitions between hidden states were used to generate it. In
our HMM framework, more forward transitions correspond
to greater progression through an attack lifecycle, which is
inherently more dangerous. To account for this, we introduce
a penalty. Using a stage propagation constant Cpropagation = 0.4
and the unique inferred forward transition count u() for an
emission sequence e processed by the Sequence Analyzer, we
define a propagation score fpropagation as:

fpropagation(e) = u(e) · Cpropagation

Finally, a simple top-level threat score combines the penal-
ties and HMM score as:

ftop(e) = fHMM(e) + fduration(e) + fpropagation(e)

However, motivated attackers may execute nonsensical at-
tack flows with backward edges to intentionally confuse the
LA detector. We leverage a memory function to store worst-
case emission subsequences in order to enhance robustness
against such scenarios. The Sequence Analyzer includes a
memory function to generate and store subsequences e′ of

e. We then define the LAPD output as the worst-case subse-
quence score within a trace:

fLAPD(e) = argmax
e′⊆e

[ftop(e
′)]

V. EXPERIMENTS AND RESULTS

We envision our LAPD framework to be deployed in com-
plex cyber-physical systems. We therefore evaluate LAPD on
an embedded multi-core development platform running drone-
based workloads. We assess multiple LAPD variants across
varying lifecycle flows, attacker capabilities, and detector
avoidance modifications. Additionally, we investigate notable
findings and analyze their underlying causes.

A. Experimental Setup

Our trace collection setup uses a Portwell PCOM-C700
Type VII carrier board equipped with a Portwell PCOM-
B700G processor module. This module features an 8-core Intel
Xeon D-1539 embedded-class processor. Power consumption
was monitored using a Hall-effect current sensor clamped
around the 12V CPU power cable, with readings sampled
at 2 kHz. Traces were expanded into sliding windows of
size 1000 with a stride of 100. A bash script running on a
separate desktop PC automated data collection, ensuring the
target board operated in a specified state before triggering data
sampling on the oscilloscope. Power traces for all modes were
collected and split into 50-50 training and testing datasets.

We utilized three benign applications representing typical
drone tasks: a SHA-3 implementation from the Extended
Keccak Code Package [46], a face detection application
using the OpenCV library with a video benchmark [47],
and an autonomous drone package delivery benchmark from
MAVBench [45]. For Execution Stage malware, we selected
Meltdown [48], Spectre [49], and L1 covert-channel [50] mi-
croarchitectural attacks as best-case scenarios for detectability
due to their noisy power signatures. Additionally, we executed
various ATT&CK actions listed in Table I, using bash scripts
and the Metasploit Framework [51].

For our LAPD framework implementation, we use an
ensemble-based detector from [11] as the Black-Box Detector.
In preprocessing for the Black-Box Detector and Action
Classifier, each sliding window was transformed into a feature
vector comprised of basic statistical features as well as Bag-
of-Words (BoW) features[52]. The Black-Box outputs were
normalized such that benign outputs formed a standard normal
distribution, with lower scores indicating more malicious be-
havior. We set Cforward threshold = −2 to determine window for-
warding. The Action Classifier is implemented as a XGBoost
Classifier [53] with default hyperparameters. The classes are
specified in Table I. Other parameters for the Action Classifier,
Sequence Analyzer, HMM, and Threat Score were configured
as specified in Section IV-D.

We tested multiple LAPD variants, each distinguished by
unique Threat Score Functions, as described in Section IV-D.

ss
h

u
fw fd

en
u

m
cf

g

en
u

m
sy

s

en
u

m
n

et m cc s

m
16

cc
16

ss
16

p
er

m rk

h
is

t

u
se

r

sc
p

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Fig. 4: Black-Box Front-End Detector results against lifecycle
actions. Some good results are achieved against the execution
stage actions, but performance greatly suffers in other stages.
Furthermore, when Meltdown and Spectre are slowed down
by 16x (s16 and m16), they can avoid detection.

LA-B represents the most basic LA detector, which uses a
top-level threat score:

fLA-B(e) = fHMM(e)

LA-D incorporates a Duration Penalty, producing:

fLA-D(e) = fHMM(e) + fduration(e)

LA-P applies the Propagation Penalty and leverages the Se-
quence Analyzer’s worst-case subsequence memory function:

fLA-P(e) = argmax
e′

[fHMM(e′) + fpropagation(e
′)]

Finally, LA-PD employs the full Threat Score Function, fLAPD,
defined in Section IV-D.

We compare LAPD against a baseline approach, where the
front-end detector is combined with a density-based detector
commonly used in prior intrusion detection studies [29, 30].
This baseline density-based detector maintains a buffer of size
d (unless stated otherwise, we use d = 40 in our experiments)
to sum a series of scores, b, produced by the Black-Box
Detector. It outputs the following top-level threat score:

fDensity = argmax
j

1

d

j+d∑
j

bj

B. Black-Box Front-End Evaluation

We first evaluate a standalone Black-Box Front-End De-
tector on all actions of our described attack lifecycle. We also
test against evasive attacks, which we implemented by slowing
down the execution rates of Meltdown, L1 Covert-Channel,
and Spectre by 16x (m16, cc16 and s16)

Fig. 4 shows ROC-AUC scores across all combinations of
benign and infected states for each type of action as mentioned

ss
h

u
fw fd

en
u

m
cf

g
en

u
m

sy
s

en
u

m
n

et m cc s

p
er

m rk

h
is

t

u
se

r

sc
p

Actual

ssh

ufw

fd

enum
cfg

enum
sys

enum
net

m

cc

s

perm

rk

hist

user

scp

P
re

d
ic

ti
on

0.5 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0

0.1 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0

0.0 0.0 0.6 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0

0.1 0.0 0.0 0.6 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.1 0.5 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.1 0.1 0.0 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8

MULTI SOFTPROB: 0.891 ACCURACY: 0.707

Fig. 5: Normalized confusion matrix of action classifier.

in Section V-A. Results show that despite good performance
against actions in the execution stage, the performance across
the rest of the lifecycle suffers greatly. Furthermore, we
validate that slowed-down, evasive attacks can easily avoid the
front-end detector. Thus, detection against attack flows cannot
be guaranteed by a Black-Box Front-End Detector alone.

C. Action Classifier Evaluation

We present the normalized confusion matrix of the Action
Classifier in Figure 5. Although the total accuracy score is
not particularly high, later full-system evaluations of LAPD
demonstrate that an accuracy of 70% is sufficient for effective
performance. This can be attributed to the fact that subsequent
components of LAPD are designed to tolerate noisy or lossy
results from the Black-Box Detector and Action Classifier.

We also highlight an important tradeoff in the Action Clas-
sification design: Increasing the number of classes improves
lifecycle coverage but comes at the cost of reduced accuracy.
While multiclass classifiers with hundreds of classes exist, they
typically operate on image data rather than noisy power traces.
Despite this limitation, we anticipate that LAPD performance
will improve with a more accurate Action Classifier.

D. Attack Lifecycle Evaluation

We evaluate the framework against multiple potential flows
through the attack lifecycle. The top-level flows are sum-
marized in Table III. The End-to-End flow represents a full
lifecycle execution and is expected to be the easiest to detect.
Next, we test a Focused flow, which models an insider threat
bypassing the discovery stage. Finally, we assess a Barebones
flow with the minimal sequence required to execute an attack.

We also model attackers with varying capabilities and adapt
malware usage within the execution stage accordingly. For
a Baseline Attack, the execution stage contains only known

TABLE III: Modeled attack flows.

Name Stages Motivation
End-to-End Initial Access, Discovery, Execution, Persistence, Exfiltration Full attack lifecycle
Focused Initial Access, Execution, Persistence, Exfiltration No Discovery needed
Barebones Initial Access, Execution, Exfiltration Minimum required stages

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

LA-B

LA-D

LA-P

LA-PD

Density

(a) Stalled Baseline Barebones

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

LA-B

LA-D

LA-P

LA-PD

Density

(b) Backedge Zero-Day Focused traces

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

LA-B

LA-D

LA-P

LA-PD

Density

(c) Backedge Baseline Focused traces

Fig. 6: ROC curves of interesting detection results as described in Table IV.

malware. For an Evasive Attack, the execution stage includes
power-evasive malware [7]. To generate traces, we used attacks
intentionally slowed down to reduce their power signature.
To model Zero-day Attacks, we created traces that completely
omit the execution stage.

Additionally, we consider attackers aware of density-based
or lifecycle-aware detectors and capable of modifying their
attack lifecycles to evade detection. Stalled traces introduce
long periods of benign activity to mislead density-based de-
tectors. Backedge traces add extraneous actions resembling
backward edges in lifecycle flows to confuse lifecycle-aware
detectors. Finally, we evaluate traces combining both stalled
and backedge modifications.

For full-system evaluation, each detector is provided with
identical, randomly generated benign and malicious window
sequences to distinguish. Malicious sequences follow the at-
tack flows described in Table III. For each evaluated attack
flow, we sample 50 malicious and 50 benign sequences. Ac-
tions are randomly selected within each stage, with all actions
from Table I included in the sampling process. We define a
benign state as a unique combination of executing benign
applications, and an infected state as one where malware
executes in parallel with benign applications. Both benign and
infected states in trace generation are randomly selected.

We evaluate lifecycle awareness by varying lifecycle flows,
attacker capabilities, and detector avoidance modifications.
The complete ROC-AUC results are presented in Table IV,
with the best scores for each trace specification noted in
bold. A key observation is that the Density detector is not
consistently outperformed. In many cases, it achieves the
highest ROC-AUC, particularly for traces without Stalled
modifications. However, even in these cases, its performance is
often only marginally better than that of the LAPD detectors.
Another observation is that LA-B rarely achieves the best

performance and, when it does, only slightly outperforms
other LAPD detectors. This reinforces the value of the Threat
Score Function and its HMM extensions. While LA-P seldom
performs best, in combination with LA-D, the full LA-PD
frequently outperforms others, suggesting that the Duration
Penalty remains valuable. The LA-D function also demon-
strates standalone benefits, especially for traces with Stalled
and Backedge Stalled modifications, where it often achieves
the best performance. One final observation is that LAPD
typically performs better against Barebones flows than against
Focused flows. This seems counterintuitive, as the Focused
flow more closely resembles the full attack lifecycle flow that
the HMM is trained on. This warrants further investigation,
but a potential cause could be the Action Classifier producing
unreliable classifications on actions in the persistence stage,
leading to additional detection issues later in the LAPD
architecture.

E. ROC Curve Analysis

We further analyze the results by examining trace specifi-
cations from Table III and their corresponding ROC curves in
Figure 6. Figure 6a illustrates a best-case scenario for LA de-
tectors, which achieve a significantly better true-positive/false-
positive tradeoff than the Density detector for Stalled Baseline
Barebones traces. In this case, the density detector’s tradeoff
results in an AUC close to 0.5, equivalent to random guessing.

Figure 6b highlights a scenario where the Density de-
tector outperforms the LA detectors. While the density de-
tector performs better, the curves do not indicate dramatic
outperformance or suggest any major underlying issue. For
Backedge Zero-Day Focused traces, which include only the
initial access, persistence, and exfiltration stages, LA detectors
without Propagation Penalty and worst-case memory exhibit
a sharp drop-off around 0.2 FPR. This suggests a subset

TABLE IV: ROC-AUC of detectors for different attack flows
and variants.

Trace Specification Density LA-B LA-D LA-P LA-PD
Baseline Attack
End-to-End 0.988 0.947 0.955 0.963 0.981
Focused 0.975 0.955 0.971 0.963 0.969
Barebones 0.981 0.959 0.961 0.982 0.988
Evasive Attack
End-to-End 0.978 0.818 0.887 0.870 0.909
Focused 0.919 0.876 0.920 0.877 0.887
Barebones 0.970 0.848 0.926 0.858 0.906
Zero-Day Attack
End-to-End 0.922 0.838 0.857 0.850 0.883
Focused 0.935 0.864 0.923 0.877 0.908
Barebones 0.877 0.804 0.885 0.805 0.859
(Default Average) 0.949 0.879 0.920 0.894 0.921
Stalled
Baseline Attack
End-to-End 0.698 0.780 0.792 0.806 0.770
Focused 0.591 0.736 0.718 0.740 0.711
Barebones 0.567 0.787 0.774 0.781 0.765
Stalled
Evasive Attack
End-to-End 0.519 0.600 0.570 0.638 0.586
Focused 0.495 0.632 0.644 0.648 0.678
Barebones 0.489 0.629 0.645 0.632 0.609
Stalled
Zero-Day Attack
End-to-End 0.493 0.673 0.680 0.674 0.696
Focused 0.530 0.669 0.658 0.668 0.603
Barebones 0.614 0.551 0.611 0.559 0.561
(Stalled Average) 0.555 0.673 0.677 0.683 0.664
Backedge
Baseline Attack
End-to-End 0.970 0.901 0.910 0.973 0.982
Focused 0.958 0.858 0.863 0.969 0.978
Barebones 0.988 0.939 0.952 0.978 0.992
Backedge
Evasive Attack
End-to-End 0.972 0.796 0.838 0.939 0.973
Focused 0.953 0.864 0.876 0.912 0.937
Barebones 0.986 0.904 0.937 0.937 0.948
Backedge
Zero-Day Attack
End-to-End 0.959 0.894 0.924 0.922 0.943
Focused 0.903 0.772 0.817 0.827 0.805
Barebones 0.922 0.840 0.899 0.857 0.872
(Backedge Average) 0.957 0.863 0.891 0.924 0.937
Backedge Stalled
Baseline Attack
End-to-End 0.565 0.763 0.715 0.823 0.804
Focused 0.569 0.728 0.716 0.774 0.745
Barebones 0.681 0.803 0.783 0.826 0.826
Backedge Stalled
Evasive Attack
End-to-End 0.504 0.708 0.664 0.712 0.667
Focused 0.525 0.706 0.664 0.735 0.706
Barebones 0.484 0.680 0.610 0.680 0.634
Backedge Stalled
Zero-Day Attack
End-to-End 0.523 0.697 0.653 0.724 0.693
Focused 0.518 0.662 0.621 0.671 0.606
Barebones 0.556 0.679 0.658 0.682 0.685
(Backedge Stalled
Average

)
0.547 0.714 0.676 0.736 0.707

(Global Average) 0.752 0.782 0.791 0.809 0.807

0 100 200 300
Window Count

0.0

0.5

1.0

1.5

F
L

A
P

D

benign

malicious

Fig. 7: Scores of benign and malicious trace streamed across
windows.

of benign traces within this specification consistently scores
above the lowest-scored malicious traces. A similar trend
appears in Figure 6c, which examines the Backedge Baseline
Focused trace specification. In several cases, LA detectors with
Propagation Penalty and memory outperform those without.
Figures 6a-6c suggest that the Propagation Penalty and worst-
case subsequence scoring improve performance by enabling
LA detectors to achieve 0 FPR at higher TPR levels.

F. Streaming Score Analysis

The lifecycle detector is time-agnostic and does not require
tuning a window length, unlike the a density-based detector.
This capability is demonstrated when streaming fLAPD across
input windows as shown in Fig.7. We observe that benign
traces rarely elevate their threat scores, whereas malicious
traces cause increasing scores as they progress through the
attack lifecycle.

VI. SUMMARY AND CONCLUSIONS

In this paper, we present LAPD, a lifecycle-aware power-
based malware detector framework that models the sequen-
tial stages of real-world attacks, including prime, execute,
and post-exploit actions. We leverage hidden Markov models
(HMMs) to capture signals across lifecycle stages. LAPD is
evaluated on multicore processors with realistic workloads
using board-level power measurements. Compared to the
baseline method, LAPD achieves a ROC-AUC score of 0.98.
Moreover, it achieves a score of 0.70 on attacks employing
stalling strategies, which the baseline detector fails to detect.

These results demonstrate that lifecycle-aware detection is
a powerful approach for power-based malware detection. We
believe lifecycle awareness can extend to malware detection
using other signals, such as API calls or microarchitectural
timing characteristics. Additionally, emerging model architec-
tures, such as transformers, show promising capabilities for

modeling event sequences beyond HMMs. We plan to explore
these alternative signals and architectures in future work.

REFERENCES

[1] M. Lipp et al., “Platypus: Software-based power side-channel
attacks on x86,” in Symposium on Security and Privacy (SP),
IEEE, 2021.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi,
“The em side—channel (s),” in International Workshop on
Cryptographic Hardware and Embedded Systems (CHES),
Springer, 2002, pp. 29–45.

[3] A. Golder, D. Das, J. Danial, S. Ghosh, S. Sen, and A. Ray-
chowdhury, “Practical approaches toward deep-learning-based
cross-device power side-channel attack,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 12, pp. 2720–2733, 2019.

[4] P. Kocher, J. Jaffe, and B. Jun, “Differential power analy-
sis,” in Annual International Cryptology Conference (Crypto),
Springer, 1999.

[5] L. Goubin and J. Patarin, “DES and differential power analysis
the “Duplication” method,” in International Workshop on
Cryptographic Hardware and Embedded Systems (CHES),
Springer, 1999.

[6] S. S. Clark et al., “Wattsupdoc: Power side channels to nonin-
trusively discover untargeted malware on embedded medical
devices,” in USENIX Workshop on Health Information Tech-
nologies (HealthTech), 2013.

[7] S. Wei, A. Aysu, M. Orshansky, A. Gerstlauer, and M.
Tiwari, “Using power-anomalies to counter evasive micro-
architectural attacks in embedded systems,” in 2019 IEEE
International Symposium on Hardware Oriented Security and
Trust (HOST), IEEE, 2019, pp. 111–120.

[8] R. Bridges et al., “Towards malware detection via cpu power
consumption: Data collection design and analytics,” in Trust-
Com/BigDataSE, New York, 2018.

[9] H. Kim et al., “Detecting Energy-Greedy Anomalies and
Mobile Malware Variants,” in Mobisys, Seoul, 2008.

[10] G. Zhang, X. Ji, Y. Li, and W. Xu, “Power-based non-
intrusive condition monitoring for terminal device in smart
grid,” Sensors, vol. 20, no. 13, p. 3635, 2020.

[11] A. Cathis, G. Li, S. Wei, M. Orshansky, M. Tiwari, and
A. Gerstlauer, “Sok paper: Power side-channel malware de-
tection,” in Proceedings of the International Workshop on
Hardware and Architectural Support for Security and Privacy,
2024, pp. 1–9.

[12] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “MITRE ATT&CK: Design
and philosophy,” Tech. Rep., 2018.

[13] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On
code execution tracking via power side-channel,” in Confer-
ence on Computer and Communications Security (CCS), 2016,
pp. 1019–1031.

[14] X. Wang et al., “Deep learning-based classification and
anomaly detection of side-channel signals,” in Cyber Sensing,
Orlando, 2018.

[15] C. R. Aguayo González and J. H. Reed, “Power fingerprinting
in sdr integrity assessment for security and regulatory com-
pliance,” AICSP, vol. 69, no. 2, pp. 307–327, 2011.

[16] J. Hernández Jiménez, Q. Chen, J. Nichols, C. Calhoun, and
S. Sykes, “Towards a cyber defense framework for scada
systems based on power consumption monitoring,” in HICSS,
Waikoloa Village, 2017.

[17] L. Caviglione et al., “Seeing the unseen: Revealing mobile
malware hidden communications via energy consumption and
artificial intelligence,” IEEE Trans. Inf. Forensics Security,
vol. 11, no. 4, pp. 799–810, 2015.

[18] L. Liu, G. Yan, X. Zhang, and S. Chen, “Virusmeter: Pre-
venting your cellphone from spies,” in International Workshop
on Recent Advances in Intrusion Detection (RAID), Springer,
2009, pp. 244–264.

[19] J. Hoffmann, S. Neumann, and T. Holz, “Mobile malware
detection based on energy fingerprints—a dead end?” In
RAID, Gros Islet, 2013.

[20] B. Dixon, S. Mishra, and J. Pepin, “Time and location power
based malicious code detection techniques for smartphones,”
in RAID, Gothemburg, 2014.

[21] M. Almshari, G. Tsaramirsis, A. O. Khadidos, S. M. Buhari,
F. Q. Khan, and A. O. Khadidos, “Detection of potentially
compromised computer nodes and clusters connected on a
smart grid, using power consumption data,” Sensors, vol. 20,
no. 18, p. 5075, 2020.

[22] P. Luckett, J. T. McDonald, W. B. Glisson, R. Benton, J.
Dawson, and B. A. Doyle, “Identifying Stealth Malware Using
CPU Power Consumption and Learning Algorithms,” Journal
of Computer Security, vol. 26, no. 5, pp. 589–613, 2018.

[23] J. A. Dawson, J. T. McDonald, J. Shropshire, T. R. Andel,
P. Luckett, and L. Hively, “Rootkit detection through phase-
space analysis of power voltage measurements,” in MAL-
WARE, Fajardo, 2017.

[24] J. H. Jimenez and K. Goseva-Popstojanova, “Malware detec-
tion using power consumption and network traffic data,” in
ICDIS, South Padre Island, 2019.

[25] J. H. Jiménez, Q. (Chen, J. Nichols, C. Calhoun, and S.
Sykes, “Towards a cyber defense framework for SCADA
systems based on power consumption monitoring.,” in Hawaii
International Conference on System Sciences (HICSS), 2017,
pp. 1–7.

[26] C. R. A. González and J. H. Reed, “Power fingerprinting in
SDR integrity assessment for security and regulatory com-
pliance,” Analog Integrated Circuits and Signal Processing,
vol. 69, no. 2, pp. 307–327, 2011.

[27] L. Invernizzi et al., “Nazca: Detecting malware distribution
in large-scale networks.,” in Network and Distributed System
Security Symposium (NDSS), Citeseer, vol. 14, 2014, pp. 23–
26.

[28] C. R. Harshaw, R. A. Bridges, M. D. Iannacone, J. W.
Reed, and J. R. Goodall, “Graphprints: Towards a graph
analytic method for network anomaly detection,” in Cyber
and Information Security Research Conference (CISR), 2016,
pp. 1–4.

[29] M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying and im-
proving the efficiency of hardware-based mobile malware de-
tectors,” in 2016 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), IEEE, 2016, pp. 1–13.

[30] I. Onat and A. Miri, “An intrusion detection system for wire-
less sensor networks,” in International Conference on Wireless
And Mobile Computing, Networking And Communications
(WiMob), IEEE, vol. 3, 2005, pp. 253–259.

[31] A. Kuppa, L. Aouad, and N.-A. Le-Khac, “Linking cve’s to
mitre att&ck techniques,” in Proceedings of the 16th Inter-
national Conference on Availability, Reliability and Security,
2021, pp. 1–12.

[32] M. S. I. Sajid et al., “Soda: A system for cyber deception
orchestration and automation,” in Proceedings of the 37th
Annual Computer Security Applications Conference, 2021,
pp. 675–689.

[33] C. Hankin, P. Malacaria, et al., “Attack dynamics: An au-
tomatic attack graph generation framework based on system
topology, capec, cwe, and cve databases,” Computers &
Security, vol. 123, p. 102 938, 2022.

[34] O. Alrawi et al., “The circle of life: A large-scale study of
the iot malware lifecycle,” in USENIX Security Symposium
(USENIX), USENIX Association, 2021.

[35] S. K. Pandey and B. Mehtre, “A lifecycle based approach for
malware analysis,” in International Conference on Communi-
cation Systems and Network Technologies (CSNT), 2014.

[36] S. Arzt et al., “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,”
ACM sigplan notices, vol. 49, no. 6, pp. 259–269, 2014.

[37] K. Oosthoek and C. Doerr, “Sok: Att&ck techniques and
trends in windows malware,” in Security and Privacy in Com-
munication Networks: 15th EAI International Conference,
SecureComm 2019, Orlando, FL, USA, October 23-25, 2019,
Proceedings, Part I 15, Springer, 2019, pp. 406–425.

[38] S. Roy, E. Panaousis, C. Noakes, A. Laszka, S. Panda, and
G. Loukas, “Sok: The mitre att&ck framework in research and
practice,” arXiv preprint arXiv:2304.07411, 2023.

[39] A. Virkud, M. A. Inam, A. Riddle, J. Liu, G. Wang, and A.
Bates, “How does endpoint detection use the {mitre}{att&ck}
framework?” In 33rd USENIX Security Symposium (USENIX
Security 24), 2024, pp. 3891–3908.

[40] F. Wilkens, F. Ortmann, S. Haas, M. Vallentin, and M. Fischer,
“Multi-stage attack detection via kill chain state machines,”
in Proceedings of the 3rd Workshop on Cyber-Security Arms
Race, 2021, pp. 13–24.

[41] R. A. Kemmerer, “Nstat: A model-based real-time network
intrusion detection system,” Computer Science Department,
University of California, Santa Barbara, Report TRCS97-18,
http://www. cs. ucsb. edu/TRs/TRCS97-18. html, 1997.

[42] W. K. Zegeye, R. A. Dean, and F. Moazzami, “Multi-layer
hidden markov model based intrusion detection system,”
Machine Learning and Knowledge Extraction, vol. 1, no. 1,
pp. 265–286, 2018.

[43] J. Byrnes, T. Hoang, N. N. Mehta, and Y. Cheng, “A modern
implementation of system call sequence based host-based
intrusion detection systems,” in 2020 Second IEEE Interna-
tional Conference on Trust, Privacy and Security in Intelligent
Systems and Applications (TPS-ISA), 2020, pp. 218–225.

[44] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-
based intrusion detection system with system calls: Review
and future trends,” ACM computing surveys (CSUR), vol. 51,
no. 5, pp. 1–36, 2018.

[45] B. Boroujerdian et al., “Mavbench: Micro aerial vehicle
benchmarking,” in 2016 51th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Fukuoka, 2018.

[46] KECCAK Team. “XKCP.” https://github.com/XKCP/XKCP,
XKCP. (Apr. 5, 2020).

[47] Y. Wong, S. Chen, S. Mau, C. Sanderson, and B. C. Lovell,
“Patch-based probabilistic image quality assessment for face
selection and improved video-based face recognition,” in
CVPR, Colorado Springs, 2011.

[48] M. Lipp et al., “Meltdown: Reading kernel memory from user
space,” Communications of the ACM, vol. 63, no. 6, pp. 46–56,
2020.

[49] P. Kocher et al., “Spectre attacks: Exploiting speculative
execution,” Communications of the ACM, vol. 63, no. 7,
pp. 93–101, 2020.

[50] C. Hunger et al., “Understanding Contention-Based Channels
and Using Them for Defense,” in HPCA, Burlingame, 2015.

[51] Rapid7. “Metasploit-framework.” https://github.com/rapid7/
metasploit-framework. (Apr. 17, 2024).

[52] J. Wang, P. Liu, M. F. She, S. Nahavandi, and A. Kouzani,
“Bag-of-words representation for biomedical time series clas-
sification,” Biomed. Signal Process. Control., vol. 8, no. 6,
pp. 634–644, 2013.

[53] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in International Conference on Knowledge Discovery
and Data Mining (SIGKDD), ser. KDD ’16, San Francisco,
California, USA, 2016, pp. 785–794.

