
Sidecars on the Central Lane:
Impact of Network Proxies on Microservices

Prateek Sahu
prateeks@utexas.edu

Univeristy of Texas at Austin

Lucy Zheng
lucy.zheng@utexas.edu

Univeristy of Texas at Austin

Marco Bueso
mbueso@utexas.edu

Univeristy of Texas at Austin

Shijia Wei
shijiawei@utexas.edu

Univeristy of Texas at Austin

Neeraja J. Yadwadkar
neeraja@austin.utexas.edu

Univeristy of Texas at Austin,
VMware Research

Mohit Tiwari
tiwari@austin.utexas.edu

Univeristy of Texas at Austin

ABSTRACT
Cloud applications are moving away from monolithic model to-
wards loosely-coupled microservices designs. Service meshes are
widely used for implementing microservices applications mainly
because they provide a modular architecture for modern applica-
tions by separating operational features from application business
logic. Sidecar proxies in service meshes enable this modularity by
applying security, networking, and monitoring policies on the traf-
fic to and from services. To implement these policies, sidecars often
execute complex chains of logic that vary across associated applica-
tions and end up unevenly impacting the performance of the overall
application. Lack of understanding of how the sidecars impact the
performance of microservice-based applications stands in the way
of building performant and resource-efficient applications. To this
end, we bring sidecar proxies in focus and argue that we need to
deeply study their impact on the system performance and resource
utilization. We identify and describe challenges in characterizing
sidecars, namely the need for microarchitectural metrics and com-
prehensive methodologies, and discuss research directions where
such characterization will help in building efficient service mesh
infrastructure for microservice applications.

KEYWORDS
Microservices, Sidecars, Service-Mesh, Performance

1 INTRODUCTION
Cloud applications arewidely adopting loosely coupledmicroservice-
based solutions [1–6]. With this change, operators of large cloud
applications face increasing challenges in traffic management as
these applications scale to hundreds, or even thousands of ser-
vices [6–9]. The complex inter-service communication patterns of
these microservices make it challenging to restrict, route, and moni-
tor the generated traffic. Service meshes are widely adopted [10–13]
as they provide robust frameworks for implementing and deploy-
ing tools that aid in simplifying the traffic management. Service
meshes leverage sidecar proxies that can be configured to execute
inter-service communication policies. These policies enable secu-
rity, networking, and observability features such as endpoint access
control, request rate limiting, and logging.

HotInfra'23, June 18, 2023, Orlando, FL, USA.
.

However, sidecars end up increasing request latency and result in
performance penalties for large applications since they are designed
to co-locate with each application container. Prior research [14]
reports 30-185% increase in latency and 41-92% overhead in CPU
usage for different benchmark applications. Other studies by leading
service mesh vendors [15–17] note 2-6× latency overheads of the
sidecar proxies. These studies also note that the CPU usage of
sidecars ranges from negligible overhead to 0.35 vCPU for every
1000 requests based on the choice of sidecars and request rates.

Thus, it is crucial to understand the performance of sidecar prox-
ies to be able to reason about the performance of microservice
applications. However, characterizing the performance implica-
tions of sidecars with complex inter-service traffic management
policies is challenging, since (a) no defined metrics exist, and (b) no
established methodology exists to guide application operators and
hardware architects to systematically optimize the performance of
microservice applications. Existing efforts [2, 6, 14, 18, 19] are based
on traditional metrics like latency and CPU or memory utilization
to study microservice performance. However, these metrics provide
no insights into how sidecar proxies interact with the underlying
hardware. To the best of our knowledge, no prior profiling work
has investigated the microarchitectural impacts of sidecar proxies
in service mesh infrastructures. Additionally, we observe signifi-
cant changes in application latencies depending on the types and
complexity of policies used. However, studies from service mesh
practitioners [15–17] neglect the impact of the diverse and complex
set of network policies that are supported [20–22].

Our work brings sidecars into focus and argues for measuring
their impact on application performance. In doing so, we high-
light the lack of any microarchitectural metrics and omission of
diverse network policies as two key challenges in understanding
the performance overheads of service-mesh sidecars. We discuss
how characterizing sidecar proxies—with microarchitectural met-
rics and a methodology covering diverse policies with varying
complexity—enables application operators to navigate the perfor-
mance trade-offs of servicemesh infrastructures; and opens avenues
in software and hardware research for microservices infrastructure.

2 BACKGROUND
To restrict, route, and monitor the inter-service traffic in microser-
vice applications, service meshes deploy one sidecar proxy along-
side each application process to mediate the corresponding traffic.

https://orcid.org/0009-0000-5569-5856
https://orcid.org/0000-0002-4513-5334
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-0384-3308

HotInfra'23, June 18, 2023, Orlando, FL, USA. Prateek Sahu, Lucy Zheng, Marco Bueso, Shijia Wei, Neeraja J. Yadwadkar, and Mohit Tiwari

Specifically, sidecars apply policies to the network traffic, with-
out modifying the main business logic or incurring any service
downtime. Sidecars use a variety of listeners that implement a set
of filters commonly known as filter-chains. Default filter-chains
usually pass through packets with minimal logging and packet
modifications. However, complex policies may require heavy com-
putations, pattern matching, and request modification. For example,
mTLS [23] enables mutually authenticating services by encrypting
the inter-service traffic; application-layer role-based access con-
trol (RBAC) [24] enables fine-grained access control by restricting
API access from certain services; request tagging [25] enables de-
tailed telemetry collection by augmenting request headers along
the service invocation chain. Furthermore, sidecar vendors provide
operators with not only a long list of common filters [20–22] but
also the option for writing custom filters [26, 27]. This configurabil-
ity and programmability make the performance characteristics of a
sidecar vary significantly across different deployment settings.

3 CHALLENGES
With the aforementioned complex policies, we discuss two major
challenges in quantitatively navigating the performance space of
employing sidecar proxies with diverse policies. Our experiments
study the performance characteristic when an Envoy proxy [28] is
allocated with different numbers of vCPUs, and when it is config-
ured with different traffic policies. We explore two commonly used
policies (a) RBAC (Role Based Access Control) and (b) IP Tag. The
RBAC policy filters out incoming requests based on their source
IP address, whereas the IP Tag policy incorporates specific header
values to the HTTP request determined by source IP addresses.
Challenge 1: Lack of adequatemetrics fails to highlight bottlenecks
in sidecar proxies accurately.

Existing performance studies of service meshes [15–17] focus on
user-sensitive metrics such as CPU utilization, latency, and through-
put. However, Figure 1 shows without microarchitectural metrics
insights like pipeline congestion using top-down analysis, operators
cannot reason about performance improvement with allocation of
additional OS resources. Figure 1 plots the latency and throughput
behavior when an Envoy [28] proxy is allocated various vCPU time.
We observe that allocation of two virtual cores (threads), mapped
to the same physical core provides no performance increase over a
single core allocated. We however do see throughput improve when
we map it to separate cores. This behavior cannot be explained with
system-level metrics and requires detailed insights into pipeline
occupancy and logical unit contention to reason about the observed
performance.

Figure 1: P90 latency for Envoy with increasing vCPU.

Policy p90 Latency (ms) p90 Cycles Instructions
IP Tag (1) 1.034 1.035 1.052
IP Tag (5) 1.039 1.054 1.088
IP Tag (10) 1.048 1.108 1.147
RBAC (100) 1.029 1.123 1.014
RBAC (10k) 1.044 1.137 1.014

Table 1: Latency, cycle, and instruction overhead for two
policies (normalized to baseline with no policies) - HTTP
request tagging with 1, 5, 10 tags , Role-Based Access Control
(RBAC) with 100 and 10k rules respectively.

Similarly, latency and dynamic instruction count of the IP Tag
policy in Table 1 show another example of the need ofmicroarchitec-
tural metrics for attributing the hardware performance bottleneck.
We notice that increasing the number of tags in IP Tagging from
1 to 5, and 10 results in a linear increase in dynamic instructions.
However, over the 1-tag baseline, cycle counts only increase by
1.8% for 5 tags yet by 7% for 10 tags. A deeper investigation reveals
that this non-linear overhead is due to L2-cache misses incurred
when processing 10 tags. IP Tagging with 10 tags shows a nearly
10% overhead in L2 misses while processing 5 tags incurs 2.1%.
Challenge 2:Neglecting network policies during profilingmisleads
performance trend prediction for sidecar proxies.

Most of service-mesh performance studies [29, 30] follow prac-
tices in microservices benchmarking [6, 18, 19], which focuses on
the impact of request sizes and request rates on performance met-
rics over a representative application set. Although they remain
relevant aspects to study the performance impact of sidecars, the
methodology needs to include diverse policies with varying com-
plexity to provide a comprehensive analysis. Prior work by Zhu
et al. [14] characterizes the overhead for some filters but omits pol-
icy complexities and their interactions with the microarchitecture.

Table 1 shows that different policies have distinct performance
impact on application latency, and increasing the policy complexity
affects performance differently. In Table 1, we note that application
latency for both policies are similar but the instruction footprint is
significantly higher in IP tagging. Differences in execution profiles
and the lack of a representative set of filters is a major challenge to
predict performance costs.

4 RESEARCH DIRECTIONS
By design, sidecars are central places to implement and consol-
idate common operational tasks, also known as the ‘datacenter
tax’. Kanev et al. [31] suggested that this datacenter tax, such as
protocol management, remote procedure calls, and data movement
contributes over 20% of CPU cycles. Their characterization of mi-
croarchitectural fetch latency and cache misses motivates further
research in systematically understanding the performance of the op-
erational tasks. As tasks around networking, telemetry, and security
get consolidated, sidecars offer unique opportunities for software
and hardware innovations. In this section, we outline how microar-
chitectural metrics and a methodology that covers diverse policies
with varying complexity could benefit software and hardware re-
search in service-mesh infrastructures.
Performance prediction and optimization in service mesh.
Our characterization enables application operators to reason about

Sidecars on the Central Lane HotInfra'23, June 18, 2023, Orlando, FL, USA.

performance trends of diverse policies. Inclusion of microarchi-
tectural metrics in profilers for sidecar proxies allows us to build
automated and dynamic tools to predict and optimize service-mesh
infrastructure for improved performance and hardware utilization.
Such tools would enable predictable service-mesh performance and
improved system utilization while maintaining the desired quality
of service.
Hardware support for service-mesh infrastructures. Hard-
ware vendors are designing solutions [32, 33] to accelerate several
cloud infrastructure components including network and storage.
Our characterization of the microarchitectural implications of side-
car proxies with a comprehensive suite of network policies helps
architects design specialized hardware that further offload the side-
car infrastructure efficiently. Offloading such service-mesh compo-
nents reduces interference, and thus enables scalable microservice
applications.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their valuable
and constructive feedback. This work was supported in part by ACE,
one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA and by Intel
RARE grant.

REFERENCES
[1] S. Joyner, M. MacCoss, C. Delimitrou, and H. Weatherspoon, “Ripple: A

Practical Declarative Programming Framework for Serverless Compute,” in
arXiv:2001.00222 [cs.DC], January 2020.

[2] Y. Zhang, W. Hua, Z. Zhou, E. Suh, and C. Delimitrou, “Sinan: Data-Driven
Resource Management for Interactive Microservices,” in Workshop on ML for
Computer Architecture and Systems (MLArchSys), June 2020.

[3] Y. Gan, S. Dev, D. Lo, and C. Delimitrou, “Sage: Leveraging ML To Diagnose
Unpredictable Performance in Cloud Microservices,” in Workshop on ML for
Computer Architecture and Systems (MLArchSys), June 2020.

[4] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of function-
as-a-service computing,” in Proceedings of the 52nd annual IEEE/ACM international
symposium on microarchitecture, 2019, pp. 1063–1075.

[5] Y. Gan andC. Delimitrou, “TheArchitectural Implications of CloudMicroservices,”
in Computer Architecture Letters (CAL), vol.17, iss. 2, Jul-Dec 2018.

[6] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson et al., “An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems,” in Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 3–18.

[7] “Netflix architecture: How much does netflix’s aws cost?” https://www.cloudzero.
com/blog/netflix-aws.

[8] “Lyft runs 300,000+ containers in a multicluster kubernetes environ-
ment | altoros,” https://www.altoros.com/blog/lyft-runs-300000-containers-in-a-
multicluster-kubernetes-environment/.

[9] Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and M. Chabbi,
“{CRISP}: Critical path analysis of {Large-Scale} microservice architectures,” in
2022 USENIX Annual Technical Conference (USENIX ATC 22), 2022, pp. 655–672.

[10] “Cncf_survey_report_2020.pdf,” https://www.cncf.io/wp-content/uploads/2020/
11/CNCF_Survey_Report_2020.pdf.

[11] “Istio / case studies,” https://istio.io/latest/about/case-studies/.
[12] “Cilium users and real world case studies,” https://cilium.io/adopters/.
[13] “Linkerd 2.x adopters | linkerd,” https://linkerd.io/community/adopters/.
[14] X. Zhu, G. She, B. Xue, Y. Zhang, Y. Zhang, X. K. Zou, X. Duan, P. He, A. Krish-

namurthy, M. Lentz et al., “Dissecting service mesh overheads,” arXiv preprint
arXiv:2207.00592, 2022.

[15] “Istioldie 1.11 / performance and scalability,” https://istio.io/v1.11/docs/ops/
deployment/performance-and-scalability/.

[16] “Benchmarking linkerd and istio: 2021 redux | linkerd,” https://linkerd.io/2021/
11/29/linkerd-vs-istio-benchmarks-2021/.

[17] “Cni benchmark: Understanding cilium network performance,” https://cilium.io/
blog/2021/05/11/cni-benchmark/, (Accessed on 05/02/2023).

[18] A. Sriraman and T. F. Wenisch, “𝜇 suite: a benchmark suite for microservices,” in
2018 IEEE International Symposium on Workload Characterization (IISWC). IEEE,
2018, pp. 1–12.

[19] S. Chen, C. Delimitrou, and J. F. Martínez, “Parties: Qos-aware resource
partitioning for multiple interactive services,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 107–120. [Online]. Available:
https://doi.org/10.1145/3297858.3304005

[20] “Network filters — envoy 1.27.0-dev-f2a6dc documentation,” https:
//www.envoyproxy.io/docs/envoy/latest/configuration/listeners/network_
filters/network_filters.

[21] “Http filters — envoy 1.27.0-dev-f2a6dc documentation,” https://www.envoyproxy.
io/docs/envoy/latest/configuration/http/http_filters/http_filters.

[22] “Network policy — cilium 1.13.2 documentation,” https://docs.cilium.io/en/stable/
security/policy/.

[23] “Rfc 8705 - oauth 2.0 mutual-tls client authentication and certificate-bound access
tokens,” https://datatracker.ietf.org/doc/html/rfc8705.

[24] “Role based access control (rbac) filter — envoy 1.27.0-dev-70be00 documen-
tation,” https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_
filters/rbac_filter.

[25] “Ip tagging — envoy 1.27.0-dev-70be00 documentation,” https://www.envoyproxy.
io/docs/envoy/latest/configuration/http/http_filters/ip_tagging_filter.

[26] “Wasm — envoy 1.27.0-dev-f2a6dc documentation,” https://www.envoyproxy.io/
docs/envoy/latest/configuration/http/http_filters/wasm_filter.

[27] “Lua — envoy 1.27.0-dev-f2a6dc documentation,” https://www.envoyproxy.io/
docs/envoy/latest/configuration/http/http_filters/lua_filter.

[28] “Envoy proxy - home,” https://www.envoyproxy.io/.
[29] “Standardizing service mesh value measurement,” https://smp-spec.io/.
[30] “Service mesh performance evaluation — istio, linkerd, kuma and consul | by

florent martin (elca) | elca it | medium,” https://medium.com/elca-it/service-mesh-
performance-evaluation-istio-linkerd-kuma-and-consul-d8a89390d630.

[31] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei,
and D. Brooks, “Profiling a warehouse-scale computer,” in Proceedings of the
42nd Annual International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p. 158–169.
[Online]. Available: https://doi.org/10.1145/2749469.2750392

[32] B. Burres, D. Daly, M. Debbage, E. Louzoun, C. Severns-Williams, N. Sundar,
N. Turbovich, B. Wolford, and Y. Li, “Intel’s hyperscale-ready infrastructure
processing unit (ipu),” in 2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, 2021,
pp. 1–16.

[33] I. Burstein, “Nvidia data center processing unit (dpu) architecture,” in 2021 IEEE
Hot Chips 33 Symposium (HCS). IEEE, 2021, pp. 1–20.

https://www.cloudzero.com/blog/netflix-aws
https://www.cloudzero.com/blog/netflix-aws
https://www.altoros.com/blog/lyft-runs-300000-containers-in-a-multicluster-kubernetes-environment/
https://www.altoros.com/blog/lyft-runs-300000-containers-in-a-multicluster-kubernetes-environment/
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://istio.io/latest/about/case-studies/
https://cilium.io/adopters/
https://linkerd.io/community/adopters/
https://istio.io/v1.11/docs/ops/deployment/performance-and-scalability/
https://istio.io/v1.11/docs/ops/deployment/performance-and-scalability/
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://cilium.io/blog/2021/05/11/cni-benchmark/
https://cilium.io/blog/2021/05/11/cni-benchmark/
https://doi.org/10.1145/3297858.3304005
https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/network_filters/network_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/network_filters/network_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/network_filters/network_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://docs.cilium.io/en/stable/security/policy/
https://docs.cilium.io/en/stable/security/policy/
https://datatracker.ietf.org/doc/html/rfc8705
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/rbac_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/rbac_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/ip_tagging_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/ip_tagging_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/wasm_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/wasm_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/lua_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/lua_filter
https://www.envoyproxy.io/
https://smp-spec.io/
https://medium.com/elca-it/service-mesh-performance-evaluation-istio-linkerd-kuma-and-consul-d8a89390d630
https://medium.com/elca-it/service-mesh-performance-evaluation-istio-linkerd-kuma-and-consul-d8a89390d630
https://doi.org/10.1145/2749469.2750392

	Abstract
	1 Introduction
	2 Background
	3 Challenges
	4 Research Directions
	References

