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ABSTRACT
Trusted applications frequently execute in tandem with
untrusted applications on personal devices and in cloud
environments. Since these co-scheduled applications share
hardware resources, the latencies encountered by the
untrusted application betray information about whether
the trusted applications are accessing shared resources
or not. Prior studies have shown that such information
leaks can be used by the untrusted application to deci-
pher keys or launch covert-channel attacks. Prior work
has also proposed techniques to eliminate information
leakage in various shared resources. The best known so-
lution to eliminate information leakage in the memory
system incurs high performance penalties. This work
develops a comprehensive approach to eliminate timing
channels in the memory controller that has two key el-
ements: (i) We shape the memory access behavior of
each thread so that it has an unchanging memory ac-
cess pattern. (ii) We show how efficient memory access
pipelines can be constructed to process the resulting
memory accesses without introducing any resource con-
flicts. We mathematically show that the proposed sys-
tem yields zero information leakage. We then show that
various page mapping policies can impact the through-
put of our secure memory system. We also introduce
techniques to re-order requests from different threads
to boost performance without leaking information. Our
best solution offers throughput that is 27% lower than
that of an optimized non-secure baseline, and that is
69% higher than the best known competing scheme.
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1. INTRODUCTION
In a cloud environment, a user application typically

executes on a server with other untrusted applications.
Also, an untrusted downloaded application typically ex-
ecutes on a user’s computing device along with other
trusted applications. These execution scenarios expose
timing side-channels between the trusted and untrusted
applications. By measuring delays to access shared re-
sources, an attacking application can estimate resource
usage patterns of the application being attacked. Such
information leakage is then used to launch a more fo-
cused attack [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Ristenpart
et al. [9] even demonstrate one possible attack on Ama-
zon EC2 hardware that exploits cache timing channels
to recover user passwords. Wang et al. [10] show that
memory timing channels can be exploited in a similar
way, or to establish covert channels.

When two or more threads run on a server, they share
many on-chip and off-chip resources, such as L1/L2/L3
caches, the on-chip network, and the memory system.
Many prior works have developed solutions to reduce
information leakage in caches and on-chip networks [11,
12, 13, 14, 15, 16], but only one recent paper by Wang
et al. [10] has examined information leakage in a shared
memory system. Wang et al. propose temporal par-
titioning (TP) that allows only a single thread (or se-
curity domain) to issue memory requests in every time
slice. This results in significant queuing delays and per-
formance degradations that grow with thread count.

In this work, we consider a comprehensive approach
to eliminate information leakage in the memory con-
troller. Our solution uses a combination of memory
access shaping, memory access pipelining with a math-
ematical model, and spatial partitioning. The memory
controller shapes the requests emerging from a thread
so that every thread has a constant injection rate, i.e.,
from the memory system’s perspective, a thread’s be-
havior does not change over time. To guarantee that



the memory system can keep up with the worst-case
pattern of memory accesses from threads, we design a
novel memory access pipeline. In essence, if the input
(the memory request pattern) to the memory controller
is fixed, the output (commands issued to the memory
system) can be fixed as well. We refer to this memory
controller design as Fixed Service (FS). Since a thread
receives a fixed level of service, its behavior is not in-
fluenced by the memory access patterns of co-scheduled
threads. We mathematically show that this combina-
tion of memory access shaping and the fixed service
pipeline can eliminate timing-based information leak-
age in the memory controller.

We go on to show that our memory access pipeline
is significantly more efficient with spatial partitioning,
i.e., if memory banks or ranks are partitioned among
threads. We also introduce hardware techniques to im-
prove performance when spatial partitioning is imprac-
tical. These techniques re-order requests from differ-
ent threads without betraying information about co-
scheduled threads. Finally, we propose techniques to
leverage a prefetcher and energy-efficiency modes.

2. BACKGROUND

2.1 DRAM Basics
Memory Ranks and Banks. High-end processors
have multiple DDR3/DDR4 memory channels, each man-
aged by an on-chip memory controller. Each channel
can support multiple ranks, where a rank is a collec-
tion of DRAM chips that work in unison to handle a
cache line request. Each rank is partitioned into multi-
ple banks. Each bank has a row buffer to store the last
accessed row in that bank. Banks and ranks help sup-
port multiple outstanding transactions, thus enabling a
high degree of parallelism in the memory system.
DRAM Commands. Read and write transactions are
placed in per-channel transaction queues. A schedul-
ing algorithm picks the best candidate for issue. This
transaction is decomposed into its constituent mem-
ory commands (Precharge, Activate, Column-read, or
Column-write) that are then placed in logical per-bank
in-order command queues. A read memory transaction
first requires an Activate operation to populate the row
buffer, followed by a Column-read to move the cache
line from the row buffer to the memory controller. The
Column-read can be issued with a special command that
performs an automatic precharge immediately after the
Column-read is complete. A precharge closes the row
and prepares the bank to read another row. If the re-
quired data is already present in the row buffer (a row
buffer hit), the Activate can be avoided. A write mem-
ory transaction requires an optional Activate, followed
by a Column-write, followed by an optional Precharge.
DRAM Timing Parameters. DRAM scheduling is
governed by resource availabilities and a number of tim-
ing parameters, e.g., two reads to different rows in a
bank must be separated by time tRC, since the first
access has to vacate the bank before another access
can commence. A Column-read must happen at least

tRCD after its Activate to allow enough time to pop-
ulate the row buffer. Time tCAS after a Column-read,
data begins to flow on the data bus. Two Activations
to different banks in a rank must be separated by time
tRRD; a single rank can only support up to four Ac-
tivates within a sliding time window of length tFAW ;
both of these timing parameters are in place because
the many banks in a rank share the same set of charge
pumps and the power delivery network. Data trans-
fers from two different ranks must be separated by time
tRTRS to accommodate the change in the bus driver.
Two accesses to the same bank have to be performed
sequentially, while accesses to different banks and ranks
can be partially overlapped. In general, two requests to
the same rank are governed by more timing parameters
(tFAW , tRRD, tRC, tWTR, etc.) because the two re-
quests have more resources in common. Two requests
to different ranks are only constrained by their shared
address/command/data buses and tRTRS.

2.2 Threat Model and Security Policy
We target scenarios where processes from mutually

distrustful security domains run concurrently on trusted
hardware with a trusted OS/hypervisor. This scenario
is typical of a cloud environment where an eavesdrop-
per virtual machine (VM) can be co-located on a CPU
with a victim VM and wants to infer the victim’s secrets
(termed as a side-channel attack). Alternately, the vic-
tim’s VM could run a malicious application that (in ad-
dition to providing useful functionality) leaks secrets to
the eavesdropper VM – this is termed a covert-channel
attack. In addition to confidentiality, side- and covert-
channel attacks can target the integrity of a trusted pro-
gram’s execution; for example, by affecting the victim’s
worst case execution time. Such attacks can be gener-
alized to the problem of preventing illegal information
flows given a lattice of security labels that represents
the allowed flows of information [17, 18].

Specifically, this paper focuses on closing illegal in-
formation flows through the memory controller and en-
forcing strict non-interference [19, 20]. Memory-based
side and covert channel attacks have been demonstrated
in practice [10, 8, 21], where an attacker process mea-
sures its own overall execution time and estimates mem-
ory access latencies. The memory access latency be-
trays queuing delays in the memory controller, which
are a result of contention for shared resources (channel,
rank, bank, etc.). The attacker can thus estimate its
co-scheduled threads’ memory intensity over time.

Wang et al. [10] describe a side-channel attack on the
RSA decryption algorithm – the victim RSA’s memory
accesses are correlated with the number of 1s in its pri-
vate key. The attacker can gauge the victim thread’s
memory traffic, estimate the number of 1s, and thus
narrow the search space to determine the private key.

Such side-channel information leakage can either be
handled with careful software re-structuring and/or with
hardware techniques. For example, sensitive datasets
can be prefetched into a statically partitioned cache and
the application’s data can be managed so the sensitive



datasets are never victimized by cache conflicts [22].
Such system-level solutions must be adapted for the
constraints of each hardware platform, e.g., the solu-
tion of Kim et al. [22] cannot use the large page sizes
that are vital for cloud applications [23]. While this
approach may be effective for small sensitive kernels,
this approach is not generally scalable – large applica-
tions with large sensitive datasets may either not fit
in cache or will require significant programmer effort.
As was shown by Xu et al. [24], the problem of infor-
mation leak through memory accesses applies to even
image and font libraries, and is thus broader than hid-
ing secret keys for small encryption kernels. Further,
Maas et al. [25] demonstrate that SQL queries have dis-
tinct memory access traces – this difference could result
in measurably distinct contention for the memory bus,
allowing an attacker to learn about SQL queries being
executed by the victim process. In this paper, we fo-
cus on a hardware approach that broadly applies across
all applications, including legacy applications, without
requiring programmer involvement.

In addition to side channels, our approach also elimi-
nates covert channels. Cloud users frequently use third-
party software, e.g., a document reader, that has full
access to the user’s confidential data. Such untrusted
third-party software can be firewalled so they cannot
communicate secrets over the network. However, this
untrusted software can establish a covert channel with
co-scheduled VMs and leak secrets without being de-
tected. While it was previously believed that covert
channel attacks on production cloud systems like the
Amazon EC2 are complicated by interference effects,
recent work has shown that covert channel information
leakage rates can be much higher than the 1 bit per
second rate suggested for high assurance systems [26].
Wu et al. [8] show how to construct a 100 bits per
second covert channel across two cores on an Amazon
EC2 processor using memory-bus locking instructions
to contend for the bus. Recent work by Hunger et
al. [21] shows that by synchronizing the covert chan-
nel sender and receiver, bandwidths of over 100Kbps
can be achieved using the memory bus channel.

While this work focuses on timing channels through
the memory system, several other timing and side chan-
nels exist in real systems. As with any security proposal,
the solution in this paper must be combined with a suite
of side channel mitigation strategies (e.g., cache par-
titioning) to plug every possible system vulnerability.
We anticipate that the proposed solution is orthogonal
and compatible with most other side channel mitiga-
tion strategies. We later discuss interactions with side
channels that are based on power measurements.

Our focus here is to design a secure scheduling pro-
tocol for memory controllers. A leaky implementation
of our protocol can of course break its non-interference
guarantees – the Heartbleed bug in the OpenSSL imple-
mentation of the Transport Layer Security (TLS) pro-
tocol is an example of such implementation-level vul-
nerabilities. Complementary research in gate-level in-
formation flow security [18, 20, 27, 28] can be applied

to writing and verifying that an RTL implementation
of our protocol does not introduce an information leak.

2.3 Temporal Partitioning (TP)
To alleviate timing channels in memory controllers,

Wang et al. introduce Temporal Partitioning (TP) [10].
With TP, the memory controller and channel (address,
command, data bus) are used exclusively by a single
thread (or security domain) at a time. After a fixed
time quantum (turn length [10]), the memory controller
switches to a different thread. The lengths of the time
quanta are determined beforehand by the OS and/or
the memory controller, based on priorities or memory
demand. These lengths cannot change at run-time as a
counter-measure against covert-channel attacks [10]. A
suggested length for the time quantum is 96 ns.

To prevent a memory operation from spilling into the
next time quantum and posing contention for the next
thread, Wang et al. disallow the issue of new memory
transactions near the end of a time quantum, referred
to as the dead time. The dead time is about 65 ns, i.e.,
only a small fraction of the time quantum is used to
initiate memory transactions.

Wang et al. also consider a bank-partitioned mem-
ory system, where threads are allocated to disjoint sets
of banks. With such bank partitioning, a thread can
overlap its data transfer with the start of a memory
transaction from another thread [29]. This brings the
dead time down to 12 ns. In later sections, we set TP
in the context of our proposed designs.

3. PROPOSAL

3.1 FS Policies with Rank Partitioning
To keep the discussion simple, we start with the as-

sumption that every thread gets an equal level of ser-
vice and that each memory rank is assigned to a single
thread. In our example system with eight threads and
eight memory ranks, each thread places all of its data in
its single assigned rank. Later, we consider the effects
of relaxing these assumptions.
Shaping the memory access pattern. We force ev-
ery thread to have a constant memory injection rate and
a uniform memory access pattern. A thread is forced
to issue a memory request at an interval of every Q cy-
cles. If the thread does not have a pending memory
request at this time, a dummy request is inserted on
behalf of this thread. We effectively rule out row buffer
hits, so every memory request takes the same time and
has an identical footprint on the memory system. Every
memory transaction is broken into the same set of com-
mands: an Activate followed by a Column-Read or a
Column-Write. The Column-Reads and Column-Writes
are issued with an auto-precharge to reduce command
bus utilization. The memory requests from a thread
are then inserted into the shared memory system and
handled as in any baseline system. Resource collisions
reveal nothing about the nature of the co-scheduled
threads beyond what is already being advertized: one
empty-row access every Q cycles.
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Figure 1: Timing diagrams for eight memory accesses from eight threads to eight different ranks. The
top diagram shows the timing parameters involved for each command. The bottom diagram shows
the per-cycle command and data bus occupancies in every cycle. Both diagrams use the same color
coding scheme for ranks R0-R7. Note that a cycle can only accommodate one of the three commands
(Activate, Column-Rd, or Column-Wr). We see that any combination of reads and writes to eight
different ranks can be accommodated in 56 memory cycles with this pipeline.

Constructing an efficient pipeline. The key here is
to pick a small enough value for Q that guarantees that
the injected memory operation will be serviced before
the interval ends. Without this guarantee, the memory
controller queue will start to build up and the system
will eventually stall. Given the deterministic nature of
memory requests from each thread, we can construct a
deterministic memory access pipeline that provides high
performance and guarantees completion before the end
of the interval. This pipeline is shown in Figure 1 for
eight threads accessing eight ranks. We will later ex-
plain how this pipeline was mathematically determined.
Timing constraints. The first row in the top dia-
gram of Figure 1 shows data bus occupancy as a result
of Column-Reads and Column-Writes – in this exam-
ple, we show six reads and three writes. Each of these
operations occupies the data bus for four data bus cy-
cles. The data bus transfers are performed in round-
robin fashion from Thread-0 (T0) to Thread-7 (T7),
respectively accessing ranks R0 - R7. Because we as-
sume rank partitioning, every consecutive pair of data
transfers deals with different ranks. Hence, we insert a
delay between consecutive data transfers that is at least
as large as the rank-to-rank switching delay (tRTRS).
The second row in the top diagram (command bus occu-
pancy) shows that each Column-read or Column-write
must be preceded by an Activate command by tRCD
cycles, which for our simulation parameters is 11 mem-
ory cycles. For reads, the Column-Read must happen

tCAS cycles (11 cycles) before the transfer on the data
bus. For writes, the Column-Write must happen tCWD
cycles (5 cycles) before the transfer on the data bus.
Detailed pipeline example. The bottom diagram of
Figure 1 shows the details of how the above set of reads
and writes move through the memory system. Each
rectangle shows resource occupancy in a cycle. The first
row shows how each read or write occupies four cycles on
the data bus, with three idle cycles between consecutive
data transfers. Each data transfer is either preceded by
a Column-Rd (11 cycles prior) or a Column-Wr (5 cycles
prior). The Column-Rd or Column-Wr are preceded by
Activate commands (11 cycles prior). Since the com-
mand bus is only asked to carry at most a single com-
mand (either Activate, Column-Rd, or Column-Wr) in
any cycle, this pipeline is valid and we are guaranteed
to complete eight memory reads/writes every 56 cycles.
The key to achieving this pipeline is the three-cycle gap
between consecutive transfers on the data bus. Note
that tRTRS (rank-to-rank switching delay) is 2 cycles
for the DRAM part assumed in our study. But we had
to grow this gap to 3 cycles to create a pipeline without
any resource conflicts. We next discuss how we mathe-
matically determined this gap.
Equations to encode DRAM timing parameters.
We first define l as the uniform gap between successive
data transfers (see the very top of Figure 1). We re-
fer to this as fixed periodic data. The subsequent equa-
tions will solve for l and show that the minimum feasible



value of l is 7 cycles. Note that l ≥ tBURST + tRTRS,
i.e., l should be large enough to accommodate the data
transfer (tBURST ) and the rank-to-rank switching de-
lay. For our simulated system, l ≥ 6. Assume that k
and k′ refer to the ids of two different data transfers.
Since every data transfer is separated by l cycles, the
kth data transfer begins in cycle kl.
The preceding Column-Rd (for a read) is in cycle kl−11.
The preceding Column-Wr (for a write) is in cycle kl−5.
The preceding Activate (for a read) is in cycle kl − 22.
The preceding Activate (for a write) is in cycle kl− 16.

A pipeline cannot be constructed if any of these com-
mands (Activate, Column-Rd, Column-Wr) for any two
data transfers k and k′ happen in the same cycle. In
other words, the four possible command bus occupancy
times for request k (kl − 11, kl − 5, kl − 22, kl − 16)
should not match the command bus occupancy times
for request k′ (k′l− 11, k′l− 5, k′l− 22, k′l− 16). This
translates into the following six non-trivial inequalities.

∀k, k′ ∈ Z kl − 22 6= k′l − 16⇒ (k − k′)l 6= 6 (1a)

∀k, k′ ∈ Z kl − 22 6= k′l − 11⇒ (k − k′)l 6= 11 (1b)

∀k, k′ ∈ Z kl − 22 6= k′l − 5⇒ (k − k′)l 6= 17 (1c)

∀k, k′ ∈ Z kl − 16 6= k′l − 11⇒ (k − k′)l 6= 5 (1d)

∀k, k′ ∈ Z kl − 16 6= k′l − 5⇒ (k − k′)l 6= 11 (1e)

∀k, k′ ∈ Z kl − 11 6= k′l − 5⇒ (k − k′)l 6= 6 (1f)

Bottomline. The smallest value of l (l ≥ 6) that fulfils
these equations is 7. Hence, every consecutive pair of
4-cycle data transfers is separated by 3 idle cycles on
the data bus. This gives us a minimum value for Q:
7×NUMTHREADS memory cycles. Thus, in our 8-
thread system, a thread can inject a new request into
the memory system every 56 memory cycles (224 CPU
cycles)1. This request is guaranteed to go through the
pipeline without any resource conflicts. Not only are
we disguising a thread to have uniform behavior, we are
eliminating the resource conflicts that are the source of
information leakage. Since we are eliminating resource
conflicts, it is natural to ask if it’s necessary to force uni-
form behavior within a thread. Note that the conflict-
free pipeline was only possible because we shaped every
thread to perform a single empty-row access to a dif-
ferent rank every Q cycles (a thread can also be stat-
ically assigned multiple issue slots in a Q-cycle inter-
val) Allowing a thread to dynamically inject more/fewer
requests into our conflict-free pipeline would reveal if
other threads were dynamically using fewer/more than
their assigned memory slots. The primary performance
1 While a request from a thread is guaranteed to be serviced
in every 56-cycle interval in our simulations, we note that
because of the asymmetry in Read and Write pipelines, the
gap between the handling of consecutive memory operations
from a thread is actually 50, 56, or 62 memory cycles.

penalty of the proposed FS design is the reduction in ef-
fective memory bandwidth utilization (57%), with each
thread receiving a fair share of this bandwidth. FS also
introduces a latency penalty by eliminating row buffer
hits.
Fixed periodic commands. We solved our equations
assuming fixed periodic data. However, we could have
also assumed a fixed periodic RAS (Activate), or a fixed
periodic CAS (Column-Rd/Wr). Had we solved the
equations with either assumption, we would have ar-
rived at an l = 12. Thus, the most efficient pipeline is
constructed by assuming fixed periodic data. The asym-
metry in these equation solutions is because of the dif-
ferent command sequences for reads and writes.
Improving bandwidth. We can also perform a sim-
ilar analysis by assuming that every thread injects N
consecutive transactions every Q cycles. This may re-
sult in a more efficient pipeline because the N trans-
actions from a single thread need not be separated by
tRTRS. We have to solve a larger set of equations –
our analysis shows that for our chosen parameters, this
did not result in a more efficient pipeline. While such
a pipeline offers higher theoretical peak bandwidth, the
number of dummy operations increases when applica-
tions have low levels of MLP.

4. SPATIAL PARTITIONING TRADE-OFFS

4.1 Forms of Spatial Partitioning
Varying thread counts mandate varying policies for

security and efficiency. We walk through a few scenarios
now, while making the following hardware assumptions:
a processor with four channels, each channel has eight
ranks, each rank has eight banks. We will assume that
all threads are being protected, although, it might also
be reasonable to design a few secure memory channels to
handle security-critical workloads and a few non-secure
high-performance channels for other workloads.
Channel partitioning. If the thread count is four
or less (an uncommon case in modern multi-core cloud
hardware), it is most efficient to map each thread to one
or more channels. Since two threads don’t share mem-
ory resources in this case, there are no timing channels.
Rank partitioning. If the thread count is greater than
four but less than 33, then each thread is assigned to
at least one of the 32 available ranks in the system.
Any channel that services multiple threads will have to
employ the FS memory controller policy to eliminate
memory timing channels.
Bank partitioning and no partitioning. If the
thread count exceeds 32, multiple threads will necessar-
ily be mapped to the same rank in our example system.
The FS policy as described so far will not be effective
in eliminating timing channels. We must therefore de-
sign a pipeline that is based on bank partitioning (since
there are 512 banks in our example system). We also
design a pipeline that is based on no partitioning at all
– this would be effective in a system with more than
512 threads, or if the OS/hypervisor complexity of spa-
tial partitioning is not desired. In a real cloud setting



with tasks/VMs being constantly spawned or idled, the
burden of performing spatial partitioning and frequent
page migrations may be high. Spatial partitioning also
limits the granularity at which memory capacity is as-
signed to threads. It is therefore important to construct
an efficient pipeline without assuming any spatial parti-
tioning. Later, we also discuss capacity/bandwidth mis-
matches that must be considered by the OS/hypervisor
when assigning resources to threads.

4.2 Bank Partitioning
Assume a memory system with bank partitioning,

i.e., a bank is not shared by multiple threads. Simi-
lar to the pipeline in the previous section, all threads
in the system inject one read or write into the memory
controller in one Q-cycle interval. To keep the discus-
sion consistent, we assume fixed periodic data. In the
worst case, a number of requests in one interval may
be sent to different banks in the same rank. As a re-
sult, a few more constraints come into play, such as
activation constraints (tFAW , tRRD), and read-write
turnarounds (e.g., tWTR). In addition to Equation 1,
we have to ensure that the following conditions are met.
For our system, tRRD is 5 memory cycles, tFAW is 24
cycles, and tWTR is 6 cycles.
tRRD constraint: There should be at least a 5 cycle
gap between two consecutive Activates. Equation 2 de-
scribes the possible scenarios for two back-to-back Ac-
tivates. There are four scenarios depending on whether
the two Activates are for reads or writes.

if k = k′ + 1 then (kl− 22)− (k′l − 16) ≥ 5⇒ l ≥ 11 (2a)

if k = k′ + 1 then (kl− 16)− (k′l − 22) ≥ 5⇒ l ≥ −1 (2b)

if k = k′ + 1 then (kl− 22)− (k′l − 22) ≥ 5⇒ l ≥ 5 (2c)

if k = k′ + 1 then (kl− 16)− (k′l − 16) ≥ 5⇒ l ≥ 5 (2d)

tFAW constraint: No more than four Activate signals
can be sent to a rank in 24 cycles. In other words, the
distance between any Activate signal and the fourth Ac-
tivate after it, should be at least 24 cycles. Equation 3
again represents the four possible scenarios.

if k = k′ + 4 then (kl− 22)− (k′l − 16) ≥ 24⇒ l ≥ 8 (3a)

if k = k′ + 4 then (kl− 16)− (k′l− 22) ≥ 24⇒ l ≥ 5 (3b)

if k = k′ + 4 then (kl− 22)− (k′l − 22) ≥ 24⇒ l ≥ 6 (3c)

if k = k′ + 4 then (kl− 16)− (k′l− 16) ≥ 24⇒ l ≥ 6 (3d)

tWTR constraint: If two consecutive Column-Rd/Wr
signals to the same rank have the same type, i.e., they
are both reads or they are both writes, then the gap
between them is tCCD. If the types are different, then
the following two constraints should be considered:
Rd2Wr delay = tCAS + tBURST − tCWD = 10
Wr2Rd delay = tCWD + tBURST + tWTR = 15
Based on these constraints, Equation 4 represents

possible scenarios for back-to-back Column-Rd/Wr op-
erations of different types.

if k = k′ + 1 then (kl− 5)− (k′l − 11) ≥ 10⇒ l ≥ 4 (4a)

if k = k′ + 1 then (kl− 11)− (k′l − 5) ≥ 15⇒ l ≥ 21 (4b)

We therefore see that to fulfil these many equations,
l ≥ 21. It turns out that with fixed periodic RAS, solv-
ing these equations gives an l ≥ 15 and we arrive at a
more efficient pipeline. The length of the best interval is
thereforeQ = 15×NUMTHREADS. For our 8-thread
case, Q is 120 memory cycles and peak bus utilization
is 27%. This basic pipeline is similar to a fine-grained
bank-partitioned TP model from prior work [10].
Improving bandwidth. The bandwidth of this model
can be improved by allowing every thread to inject N
operations in a Q-cycle interval. Multiple requests from
a thread can be issued before finally having a 15-cycle
gap and switching to the next thread. This is similar to
a coarse-grained bank-partitioned TP model and as we
show later, turns out to be less effective.
Reordered bank partitioning. We consider an opti-
mization to this design that is based on the observation
that the pipeline is primarily limited by the write-to-
read delay constraint. We overcome this limitation by
re-ordering the reads and writes within a Q-cycle inter-
val. All threads inject their memory transactions at the
start of the interval. We first perform all the reads,
followed by all the writes. Every back-to-back data
transfer is separated by 6 cycles. After the very last
write, a 15-cycle gap is introduced before (read) data
transfers from the next Q-cycle interval. The value of
Q is therefore 63 cycles, and effective bus utilization
nearly doubles to 51%. However, such re-ordering may
leak some information about the read-write ratios of
co-scheduled threads. For example, if a thread runs
with write-intensive threads, it’ll see faster read laten-
cies than if it ran with read-intensive threads. To pre-
vent this, we must ensure that the results of all read
operations in a Q-cycle interval are returned to the pro-
cessor en masse at the end of the interval.

4.3 No Partitioning
Basic Pipeline. Next, if we attempt to avoid any
kind of spatial partitioning, we see that the length of
the interval may be much higher. In the worst case,
all threads in a Q-cycle interval may activate different
rows in the same bank. The largest gap between two
transactions would involve a write followed by a read
to different rows in the same bank. With fixed peri-
odic RAS, this gives us the best l = 43 cycles. For an
8-thread system, this amounts to an interval length of
344 memory cycles and a memory bandwidth utilization
of only 9%. This design is similar to the fine-grained no-
partitioned TP model. A coarse-grained model is also
possible by allowing a thread to issue multiple requests
as long as a 43-cycle gap is introduced between requests
from different threads.
Triple Alternation Optimization. To address the
poor performance with no partitioning, we introduce an
optimized pipeline, illustrated in Figure 2 for 8 threads.
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Figure 2: Two pipelines for systems that do not assume any spatial partitioning. The first pipeline is
naive and assumes a 43-cycle gap because consecutive requests can go to the same bank. The second
pipeline assumes that consecutive requests go to different banks (with triple alternation). This brings
the gap between consecutive requests to 15 cycles.

As seen in this figure, we construct three Q/3-cycle in-
tervals. In the first interval, threads 0, 3, and 6 are
allowed to access banks that are multiples of three;
threads 1, 4, and 7 are allowed to access banks that
are multiples of three plus one; threads 2 and 5 are al-
lowed to access banks that are multiples of three plus
two. In the next interval, threads 0, 3, 6 are allowed
to access banks that are multiples of three plus two,
and so on. If we just consider thread 0 and 1 (or any
two consecutive threads), we know that they are essen-
tially bank-partitioned, i.e., they never touch the same
bank in consecutive accesses. So it is safe to separate
their Activations by 15 cycles (see the earlier discussion
on bank partitioning). Once this is done, we see that
thread 0 and thread 3 are now separated by 45 cycles.
Since thread 0 and thread 3 may touch the same bank,
their accesses must be separated by at least 43 cycles, a
condition guaranteed by the 45-cycle separation. This
pipeline makes it safe for groups of threads to access the
same bank. Unfortunately, we can’t use the read-write
re-ordering optimization from the previous sub-section
to further reduce the gap between consecutive memory
accesses – such re-orderings can upset the triple alter-
nation alignment of memory accesses.

With this optimized pipeline, in 360 memory cycles,
every thread is guaranteed service of its next memory
request. But in practice, a thread may be able to ser-
vice three memory requests in that 360 cycle interval. In
fact, the transaction scheduler, instead of using FCFS,
can look for transactions headed to appropriate banks,
depending on the interval. The triple alternation opti-
mization improves effective bandwidth from 9% to 27%.

4.4 Summary
Figure 3 summarizes the relevant design points in-

troduced here and in prior work. The figure also gives
a preview of the performance numbers in Section 7. It
highlights the trade-offs involved in spatial partitioning,
and the contributions, relative to prior work.
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(TP), and new FS design points.

5. DESIGN DETAILS AND OPTIMIZATIONS

5.1 Hardware/Software Changes
Baseline Microarchitecture. In a non-secure base-
line, read and write requests emanating from the LLC
are placed in transaction queues at the memory con-
troller. The physical organization of the transaction
queues is typically designed to match the scheduling al-
gorithm; for example, there may be separate queues for
reads and writes. When a transaction queue fills up,
back-pressure is applied and processors are stalled. A
non-trivial scheduling algorithm, e.g., [30], that consid-
ers row buffer hits, thread priorities, read/write priori-
ties, thread memory intensities, etc., is used to pick the
next transaction from these queues. The selected trans-
action (Read X or Write Y) is then broken into its con-
stituent commands (Activate, Column-read/write) and
placed in the command queues. The command queues



are logically organized as per-bank structures. In ev-
ery cycle, each bank looks at its oldest command and
flags it as ready if all timing constraints are fulfilled.
A fair arbiter then selects one of multiple ready com-
mands for issue. When data returns from the memory
system, the MSHRs are updated to convey ready data
to the processors/LLC.
Proposed Microarchitecture. To keep the discus-
sion simple, we have used the term “thread” through-
out. In reality, we want to isolate “security domains”
or VMs. When a cache line request shows up at the
memory controller, it carries a tag that indicates its
security domain. Such a tag would be required in any
comprehensive effort to eliminate timing channels in the
cache, NoC, etc. Our proposed design maintains sepa-
rate transaction queues per security domain; the arriv-
ing memory transaction’s tag indicates the queue that it
should be placed in. If necessary, bypassing from stores
to loads is performed just as in a baseline transaction
queue. The OS prevents users from creating more secu-
rity domains than the number of transaction queues in
the memory controller. Each transaction queue receives
a fixed level of service, as determined by the OS and a
service-level agreement (SLA). Based on the number of
active domains, their SLAs, and the use of any spatial
partitioning, the OS computes the values of Q and l.

In its most basic form, every l cycles, the FS transac-
tion scheduler picks the head of the appropriate transac-
tion queue (or a dummy operation) and inserts the con-
stituent commands into the command queues. In con-
trast, a baseline state-of-the-art transaction scheduler
performs aggressive out-of-order scheduling by checking
all addresses for potential row buffer hits, and moni-
toring read/write priorities, thread memory intensities,
etc. While a baseline transaction queue is relatively
large to help identify row buffer hits, the FS transaction
queue can be relatively small because it is largely in-
order. The proposed transaction queue/scheduler there-
fore has lower implementation complexity than that of
state-of-the-art baselines. In its most complicated form,
the FS transaction scheduler only has to scan a few bits
in one queue to look for a transaction that meets spe-
cific criteria (e.g., dealing with a specific group of banks
in triple alternation). Our changes are confined to the
transaction scheduler and the rest of the memory con-
troller logic is unchanged. Once the right commands are
inserted into the command queues at the right time, the
baseline command scheduler issues the commands in a
deterministic order with no resource conflicts.
Software Changes. To optimize energy efficiency while
meeting performance guarantees, a cloud scheduler packs
as many VMs as possible into each server. With hard-
ware that provides memory service guarantees, this pro-
cess is simplified. In a secure cloud setting, the OS/ hy-
pervisor assigns resources, including memory capacity
and bandwidth, to security domains/VMs based on the
SLA. The bandwidth influences the number of transac-
tions that a security domain can inject in an interval.
The capacity influences the number of ranks or banks
that are assigned to that domain under spatial parti-

tioning. For example, under rank partitioning, if a do-
main receives four ranks and two issue slots, in every
Q-cycle interval, the memory controller will select two
different transactions for that domain accessing differ-
ent ranks. If a domain receives two ranks and four issue
slots, the accesses in an interval can’t all be to differ-
ent ranks, so the memory controller employs a bank-
partitioned schedule – in every Q-cycle interval, four
different transactions are selected for that domain ac-
cessing different banks. In other words, the SLA and
OS resource allocation policies determine the appro-
priate memory controller schedule, not the other way
around. The OS has to communicate the mapping of
domains to ranks/banks to the memory controller so
that requests can be routed to the appropriate trans-
action queue. The OS may choose to alter resource al-
locations at selected application phase changes, as long
as this does not leak sensitive information [31]. The
OS must provide support for page coloring. Page mi-
grations are required when, for example, the OS moves
from no partitioning to rank partitioning. The cost of
such page migrations must be considered in any deci-
sions regarding resource re-allocations or task spawn-
ing. Rank partitioning may also lead to higher memory
fragmentation since memory is allocated to each secu-
rity domain at the granularity of a few giga-bytes.
Security Invariant. The FS protocol enforces non-
interference across security domains by a) mapping each
transaction queue to a unique security domain, and b)
maintaining dedicated logic for each transaction queue.
All other optimizations – that provide performance im-
provements over TP – are due to (offline) constraint
solving by the trusted OS-level component to yield a
deterministic schedule for issuing memory transactions.
Further design points spatially separate the ranks or
banks assigned to a security domain.

An RTL implementation of the FS memory controller
is thus well suited to gate-level verification [18, 27, 28].
This is because the key design patterns for gate-level
security are similar to FS’ design – the trusted logic
either partitions the state bits (spatial isolation), or
“leases” [20] some state bits to an untrusted domain
based on a trusted time-schedule (temporal partition-
ing). If the SLA changes, then the memory controller
state has to be drained similar to a CPU pipeline drain
on a context-switch [27]. Overall, a verified gate-level
implementation and a bug-free OS component can en-
sure that the FS controller’s protocol-level non-interference
guarantee is carried through to the actual artifact.

5.2 Dummy Operations
When it is a thread’s turn to issue a memory op-

eration and the thread has no pending operations, the
memory controller inserts a dummy read or write on be-
half of that thread. A dummy operation can therefore
be a read request to a random address within the rank
and the returned value is simply discarded. A side-effect
of this is that every thread also has a constant memory
energy/power requirement. The proposed memory sys-
tem is therefore also resilient to physical attacks that



are based on energy/power measurements.
Performance optimization: Prefetches: One way to use
the dummy operation to do useful work is to use that
slot to issue a prefetch operation for that thread. We
use the sandbox prefetcher [32] to generate up to 4 high-
confidence prefetch instructions that are issued when
there aren’t any pending memory accesses. This can be
implemented with a multiplexer and a few-entry prefetch
queue beside each transaction queue.

If there is no fear of physical attacks based on en-
ergy measurements, then the following three energy op-
timizations are possible.
Energy optimization 1: Suppressed reads/writes: When
the command scheduler encounters a dummy operation,
it does not actually issue commands to the memory sys-
tem. It simply updates timing parameters and DRAM
state as if the command had issued, i.e., the actual
memory read or write is suppressed.
Energy optimization 2: Boosting row buffer hits: If
the transaction scheduler detects the possibility for a
row buffer hit and communicates this to the command
scheduler, the latter can avoid the issue of the auto-
Precharge and subsequent Activate. Again, DRAM state
is updated as if these commands had issued.
Energy optimization 3: Power-down states: Another
possibility is to power-down a rank instead of issuing
a dummy operation. The deep-sleep states have wake-
up times that exceed 56 memory cycles, but some of the
lighter power-down modes have transition latencies of
10 memory cycles [33]. Therefore, if there are no pend-
ing requests to a rank at the start of an interval, the
memory controller can issue a power-down command
to that rank. The power-up command is issued 5 cycles
before the end of the interval, e.g., the memory access
pipeline in Figure 1 shows that the command bus is free
to transmit the power-down signal in that cycle.

6. METHODOLOGY
For our simulations, we use Windriver Simics [34] in-

terfaced with the USIMM memory simulator [35]. USIMM
is configured to model a DDR3 memory system. While
our target system is a 32-core processor with 4 chan-
nels, we limit simulation time by focusing on eight out-
of-order processor cores and a single channel for most
experiments. Simics and USIMM parameters are sum-
marized in Table 1. Our baseline non-secure state-of-
the-art scheduler is the best performing scheduler from
the 2012 Memory Scheduling Championship [36].

We use a collection of multi-programmed workloads
from SPEC2k6. Libquantum, milc, mcf, Gems-FDTD,
astar, zeusmp and xalancbmk are run in rate mode
(eight copies of the same program). SPEC programs
are fast-forwarded for 50 billion instructions before de-
tailed simulations are started. Simulations are termi-
nated after a million memory reads are encountered.
We used NPB workloads [38] CG and SP. We also con-
sider the following workloads that mix benchmarks with
varying memory requirements. Mix1 has two copies
of xalancbmk, soplex, mcf and omnetpp. Mix2 has
two copies of milc, lbm, xalancbmk and zeusmp. Each

Processor

ISA UltraSPARC III ISA
CMP size and Core Freq. 8-core, 3.2 GHz

ROB size per core 64 entry
Fetch, Dispatch, Maximum

Execute, and Retire 4 per cycle

Cache Hierarchy

L1 I-cache 32KB/2-way, 1-cycle
L1 D-cache 32KB/2-way, 1-cycle
L2 Cache 4MB/8-way,

shared,10-cyc

DRAM Parameters

DRAM Frequency 1600 Mbps
Channels, ranks, 1 ch, 8 ranks/ch,

banks 8 banks/rank
DRAM chips 4 Gb capacity

DRAM Timing Parameters (DRAM cycles)
tRC = 39, tRCD = 11,tRAS = 28, tFAW = 24
tWR = 12,tRP = 11,tRTRS = 2, tCAS = 11
tRTP = 6, tBURST = 4,tCCD = 4, tWTR = 6
tRRD = 5, tREFI = 7.8µs, tRFC = 260ns

Table 1: Simulator and DRAM [37] parameters.

benchmark in these mixes is terminated after it executes
the same number of instructions as in its baseline run.
We assume that all co-scheduled programs receive an
equal share of memory bandwidth and capacity.

For our memory energy analysis, we use the Micron
power calculator for a DDR3 4 Gb part [39]. The cal-
culator is fed with memory statistics collected during
detailed Simics simulations. In the subsequent graphs
we use the following abbreviations. TP BP is Temporal
partitioning with Bank Partitioning, TP NP is Tempo-
ral partitioning with No spatial partitioning. FS RP is
Fixed-Sevice with Rank Partitioning, FS Reordered -
BP is Fixed-Service with Reordered Bank Partitioning,
and FS NP Optimized is Fixed-Service with No Parti-
tioning and the Triple Alternation optimization.

7. RESULTS
Information Leakage Analysis

In Figure 4, we show four execution profiles for work-
load mcf. Every point on the X-axis represents 10K
instructions and the Y-axis represents the time taken
to complete that many instructions. The red curve
shows the progress made by mcf with a non-secure base-
line memory controller when running with 7 synthetic
threads that make no memory accesses. The blue curve
shows the progress made by mcf with a non-secure base-
line memory controller when running with 7 synthetic
threads that are highly memory-intensive. Given the
divergence in the two curves, the attacker (represented
by workload mcf) can decipher the memory intensity of
its co-scheduled threads. The black and green curves
represent mcf running on the proposed FS scheduler
when running with non-memory-intensive and memory-



intensive threads respectively. The black and green
curves overlap perfectly because FS offers determinis-
tic execution to mcf regardless of the nature of the co-
scheduled threads. This graph is simply a visual illus-
tration of the performance trade-off and the zero infor-
mation leakage that was mathematically demonstrated.
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Figure 4: Execution profiles for benchmark mcf
with and without the FS scheduler.

Analyzing TP
Our analyses in the previous sections describe a gen-

eralized way of constructing efficient memory pipelines
in a variety of settings. The models in prior TP work are
special cases – they resemble the basic bank-partitioned
and no-partitioned pipelines.

We first analyze the behavior of TP for 8 threads
and 8 ranks as turn length is varied. We assume bank-
partitioned and no-partitioned models and show the
sum of weighted IPCs in Figure 5. Sum of weighted
IPCs for each model is the summation of normalized
IPCs for each thread, where the normalization is against
the IPC of that thread using a baseline non-secure sched-
uler. We consider minimum sized turn lengths and a few
larger turn lengths. Short turn lengths in TP can reduce
wait times, while longer turn lengths improve band-
width utilization. We see that minimum turn lengths
are best in both cases (except for GemsFDTD) because
reducing wait times is far more important than improv-
ing bandwidth for our workloads on average. The best
TP model with bank partitioning has an average mem-
ory latency of 683 cycles, theoretical peak bandwidth of
27%, and actual average bandwidth of 17%. Its perfor-
mance is 57% lower than that of the non-secure baseline.
FS Performance

Next, we show performance for FS techniques in Fig-
ure 6. The results also show the best TP designs. We
see that FS with rank-partitioning yields a 69.3% im-
provement and FS with re-ordered bank-partitioning
yields a 11.3% improvement, relative to the best bank-
partitioned TP design. The FS triple alternation method
with no partitioning improves performance by 2×, rel-
ative to the best TP approach with no partitioning.

The best FS design has an average sum of normalized
IPCs that is 27% lower than that of the non-secure base-
line. This design has an average memory access latency
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Figure 5: Performance for bank-partitioned
and no-partitioned TP with varying turn lengths
and 8 threads. The non-secure baseline would
have a throughput of 8 with this metric.

of 288 cycles and a theoretical bandwidth of 57%. The
effective bandwidth utilization is 37%; 36% of all mem-
ory transactions on average are dummy requests. The
percentage of dummy requests in individual workloads
ranges from 2.3% for libquantum to 87% for xalancbmk.
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Figure 6: Performance for 8-core FS and TP.

Prefetch Technique
Figure 7 shows the rank-partitioned FS design with

8 threads, with and without the prefetch optimization.
The figure also shows the non-secure baseline with prefetch
added. In the baseline, 42.4% of all memory accesses are
prefetches and the resulting performance improvement
is 6.3%. In FS with the prefetch technique, 13.4% of
all memory accesses are prefetch operations and 43.7%
of these prefetches prove to be useful. The technique
improves the performance of FS by 11% on average.
Energy Analysis

Figure 8 shows memory energy for the non-secure
baseline, the three FS schemes and the two TP models.
The memory energy for the baseline is clearly superior
because it has the lowest execution time, fewest mem-
ory accesses, and most row buffer hits. FS is able to
out-do TP primarily because of its significantly lower
execution time even though it issues 36.6% more mem-
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Figure 7: Performance for FS with 8 threads
and rank-partitioning, with and without the
prefetch optimization.

ory accesses (dummy operations). FS has an energy
consumption that is 11.4% lower than that of TP and
that is within 19% of the non-secure baseline.
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Figure 8: Memory energy for the baseline and
various FS and TP schemes.

Figure 9 shows the energy reductions with the three
energy optimizations for rank-partitioned FS. While the
first two optimizations are trying to recover some of the
losses introduced by FS, the third optimization is a new
opportunity created by FS – a deterministic pipeline is
amenable to power-down strategies that have zero im-
pact on performance. These optimizations collectively
reduce memory energy of FS by 52.5% and this opti-
mized version of FS has a memory energy dissipation
that is within 3.4% of the non-secure baseline.
Sensitivity Analysis

Figure 10 shows the scalability of TP and FS as thread
count varies (we assume as many ranks as threads). In
TP and FS, the memory latencies scale roughly lin-
early with core count. At low core counts, the rank-
partitioned FS model suffers from the following phe-
nomenon. In the worst case, DRAM timing parameters
dictate that two transactions to the same rank be sepa-

mix1
mix2 CG SP 

astar
lbm 

lib
quantum mcf

milc
 

zeusmp

GemsFDTD

xalancbmk AM
0

0.5

1

1.5

2

2.5 FS_RP Suppressed_Dummy
Row-buffer-optimization Power-Down

N
o

rm
a

li
ze

d
 E

n
e

rg
y

Figure 9: Memory energy for rank-partitioned
FS and with three energy optimizations.

rated by 43 cycles. With rank partitioning, if the num-
ber of threads and ranks in the system is six or lower,
a thread may issue two back-to-back memory transac-
tions to the same rank with a gap of 42 cycles or less,
thus potentially violating the above constraint. In such
cases, the transaction scheduler may have to pick a dif-
ferent transaction from the same thread (to a different
bank in the same rank) or insert a dummy operation. In
spite of this phenomenon, the FS models out-perform
the TP models significantly in the 4-thread (85% im-
provement) and 2-thread (18% improvement) cases.
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Figure 10: Performance for rank/bank-
partitioned FS and bank-partitioned TP.

8. RELATED WORK
While the high-level approach of FS focuses on fine-

grained interleaving of threads with a deterministic sched-
ule of commands, the eventual FS design is a form of
fine-grained temporal partitioning [10]. We mathemat-
ically formulate a number of efficient ways to construct
deterministic schedules – this leads to a generalized
framework with security guarantees, a number of op-
timizations (e.g., rank partitioning, triple alternation,
fixed periodic data/RAS/CAS, reordered bank parti-
tioning), and an analysis of the trade-offs introduced
by spatial partitioning. Figure 3 highlights the quanti-
tative contributions of the proposed design points.



In addition to Wang et al. [10], a few other papers
have tried to eliminate timing channels in caches and
on-chip networks [11, 12, 13, 14, 15, 16]. Note that
these techniques do not eliminate memory timing chan-
nels. Martin et al. [40] thwart timing channel attacks
by limiting a user’s ability to take fine-grained timing
measurements. Saltaformaggio et al. [6] identify poten-
tial attacks from atomic instructions that can lock up
the memory system; they develop solutions that require
hypervisor extensions. Gundu et al. [41] argue that
bandwidth reservation is effective in mitigating mem-
ory timing channels, but do not construct an efficient
pipeline that guarantees timing channel elimination.

Virtually pipelined network memory [42] (VPNM)
is proposed for routers, where attackers can increase
packet service times and cause packets to be dropped.
VPNM scatters packets randomly over memory banks
to avoid prolonged bank contention, and to achieve ac-
ceptable queuing latency (1000 ns). Our approach is
optimized for desktops and servers, with a focus on
low-latency memory access and timing channel based
attacks. Probabilistic approaches are not as effective
to deal with timing channel attacks because a persis-
tent attacker with enough time and resources can take
many measurements to separate signal from noise.

Reineke et al. [43] design a DRAM controller with
predictable latencies, targeted at real-time applications.
Their design is most similar to the bank-partitioned TP
model [10] discussed earlier. CCSP arbitration [44] as-
signs priorities and bandwidth, and regulates request
rate to ensure bounded latency.

Wassel et al. [16] propose SurfNoC, an on-chip net-
work that reduces the latency incurred by temporal par-
titioning. SurfNoC modifies router packet scheduling
and relies on static virtual channel partitioning.

A few papers [45, 46, 47, 48] have used memory band-
width reservation to aid QoS policies. QoS and timing
channel prevention policies differ in two ways: (i) QoS
policies allow allocations to change based on need, and
(ii) QoS policies allow a thread to steal idle resources
from another thread, thus betraying information about
other threads. While FS does not allow either prop-
erty, it can be used to enforce a bandwidth cap on each
application, thus partially assisting QoS efforts.

9. CONCLUSIONS
Our paper develops a general framework for construct-

ing deterministic high-throughput memory pipelines that
eliminate contention among threads for memory resources.
It thus offers zero information leakage and high perfor-
mance under a variety of scenarios. The best FS model
yields a performance degradation of 27%, relative to
a non-secure baseline. It out-performs the best-known
competing approach (TP) by 69%. Even with no OS
support, the proposed triple alternation FS approach
out-performs TP by 2×. The key to the new design
is efficient pipelining of requests from different threads
while avoiding problematic DRAM timing constraints.
Of the many new techniques considered in this paper,
rank partitioning and triple alternation had the highest

impacts (69% and 100%, respectively), while the gains
with reordered bank partitioning and prefetching were
more modest (11% and 11%, respectively).
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