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Abstract—
Hardware-based malware detectors (HMDs) are a key emerg-

ing technology to build trustworthy systems, especially mobile
platforms. Quantifying the efficacy of HMDs against malicious
adversaries is thus an important problem. The challenge lies in
that real-world malware adapts to defenses, evades being run in
experimental settings, and hides behind benign applications. Thus,
realizing the potential of HMDs as a small and battery-efficient line
of defense requires a rigorous foundation for evaluating HMDs.

We introduce Sherlock—a white-box methodology that quanti-
fies an HMD’s ability to detect malware and identify the reason
why. Sherlock first deconstructs malware into atomic, orthogonal
actions to synthesize a diverse malware suite. Sherlock then drives
both malware and benign programs with real user-inputs, and
compares their executions to determine an HMD’s operating range,
i.e., the smallest malware actions an HMD can detect.

We show three case studies using Sherlock to not only quantify
HMDs’ operating ranges but design better detectors. First, using
information about concrete malware actions, we build a discrete-
wavelet transform based unsupervised HMD that outperforms
prior work based on power transforms by 24.7% (AUC metric).
Second, training a supervised HMD using Sherlock’s diverse
malware dataset yields 12.5% better HMDs than past approaches
that train on ad-hoc subsets of malware. Finally, Sherlock shows
why a malware instance is detectable. This yields a surprising new
result—obfuscation techniques used by malware to evade static
analyses makes them more detectable using HMDs.

I. INTRODUCTION

Mobile devices store personal, financial, and medical data
and enable malicious programs to spread quickly through app-
stores. Unsurprisingly, 2015 saw 900K new mobile ‘malware’
compared to 300K in 2014. Mobile malware infects applica-
tions through errors by users, developers, or platforms like
Android [1], [2], [3]. Once infected, malware can run ‘payloads’
such as stealing private data from the victim device or making
HTTP requests to attack a remote server while masquerading
as the infected application. Hence, machine learning classifiers
that differentiate operating system and network behaviors of
benign programs from malware are an attractive line of defense
against mobile malware [4].

Hardware-based malware detectors (HMDs) are a recent
category of behavioral malware detectors [5], [6], [7], [8]. An
HMD observes programs’ instruction and micro-architectural
traces and raises an alert when the current trace’s statistics
look either anomalous compared to benign traces (unsuper-
vised HMDs) or similar to known malicious traces (supervised
HMDs). HMDs are small, secure even from a compromised
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Fig. 1. Overview of Sherlock.

OS, and can observe instruction-level attacks (such as row
hammer [9], [10] and side-channel data leaks [11]) that leave no
system call trace [12]. HMDs are thus a trustworthy first-level
detector in a network-wide malware detection system [13], [14]
and are being deployed in commercial mobile devices1 as of
early 2016.

Architects designing HMD accelerators face two unique
challenges. First, unlike benign programs like SPEC, malware
adapts to proposed modeling algorithms and will evade de-
tectors that only learn behaviors of existing malware [15]. For
example, we found that changing only the number of execution
threads or inter-action delays in a malware was sufficient
to evade an HMD [5] trained on single-threaded binaries
of the same malware. Second, to compare malware against
benignware executions, HMDs have to run both programs with
real user inputs. For example, a human user playing Angry
Birds produces very different instruction traces compared to
quiescent traces when no user is driving the app. Hence, the
traditional ‘black-box’ approach for evaluating HMDs – without
looking deeply into malware computation and without real user
interaction – yields results that will not hold in practice.

In this paper, we present Sherlock—a ‘white-box’ meth–
odology to evaluate HMDs for mobile malware. Sherlock is built
on two principles: (1) malware will adapt to evade detection,

1https://www.qualcomm.com/products/snapdragon/security/smart-
protect978-1-5090-3508-3/16/$31.00 ©2016 IEEE



and (2) malware hides behind benign programs, and only by
running both malware and benignware with real user-inputs
can we determine whether an HMD can tell them apart. These
principles lead to a significant system-building effort and to
new insights about HMDs for mobile malware.

The Sherlock platform in Figure 1 embodies both principles:
(1) Sherlock synthesizes malware specifically to find the break-
ing point of an HMD under test. To do so, we introduce a
taxonomy of mobile malware and present a synthesis tool that
generates obfuscated malware with a configurable payload (i.e.,
tasks to run) that is a superset of the 229 malware we studied.
(2) Sherlock tests HMDs when benign and malware programs
use the same, long-running user inputs. To do so, Sherlock
correctly records and replays thousands of 5–10 minute long
user sessions (such as playing Angry Birds or running medical
diagnostics) on real hardware. An HMD analyst can then use
Sherlock’s third component – HMD algorithms – to design and
evaluate new ways of extracting features from program traces
in order to train machine learning algorithms.

Sherlock’s design principles yield a new metric for quanti-
fying HMDs’ performance. An operating range of an HMD
algorithm is a metric that tells an analyst the root cause behind
a malware alert as well as when the HMD fails. An operating
range is expressed as the smallest malware payload X hidden
in application Y that an HMD algorithm A can detect with a
false positive rate of Z. For example, an analyst can determine
how efficiently a compromised browser (Y) can steal SMSs or
photos (X) when a random-forest HMD (A) is deployed at a
pre-set false positive rate of 5% (Z).

The operating range of an HMD is independent of the
training and testing set of malware – instead, it is defined
in terms of atomic actions in malware payloads (X) such as
stealing one photo or an SMS, sending an HTTP request,
etc. An analyst can thus use the operating range to quantify
HMD performance based only on (relatively invariant) high-
level malware behaviors. Further, operating range describes
false positive rate Z by comparing malware to the exact benign
app Y that malware hides in—comparing a malware run to an
arbitrary benign app or system utility yields an unrealistically
good false positive rate.
Case Studies using Sherlock. We demonstrate Sherlock’s utility
by designing better HMDs than prior work, and by showing
(for the first time) that evading static program analysis makes
malware more visible to HMDs.

Our first case study shows that taking concrete mobile
malware actions into account yields a better unsupervised HMD
than directly applying desktop HMDs designed to detect short-
lived exploits. Specifically, atomic software-level actions on
mobile devices such as stealing a 4MB photo or one SMS takes
a long time at the hardware level (2.86s and 0.12s respectively
on a Samsung Exynos 5250 device). We design a new HMD
that uses longer-duration (100ms) feature vectors, extracts low-
frequency signals, and is 24.7% more effective using the area
under the ROC curve (AUC) metric than prior work [6].

Our second case study uses Sherlock’s malware synthesizer
to design supervised HMDs with 97.5% AUC – 12.5% better

than prior work. Specifically, we train on a malware set that
covers diverse, orthogonal behaviors compared to prior work
that trains HMDs on an ad-hoc subset of behaviors. Further,
the supervised HMD’s operating range covers even small data
(1 photo, 25 contacts, 200 SMSs, etc) being stolen with close to
100% accuracy at a 5% false positive rate. However, malware
payloads that clog remote servers by sending them HTTP re-
quests are virtually undetectable at the hardware level—Sherlock
provides such semantic insights into why HMDs succeed and
fail.

Our final case study in using Sherlock’s malware synthesizer
yields a surprising result—obfuscation techniques that evade
detection by static analysis tools make HMDs more effective.
Specifically, malware developers use string encryption and Java
reflection to create high-fanout nodes in data- and control-
flow graphs and thus foil static analysis tools. However, these
obfuscation techniques in turn create instruction sequences and
indirect jumps that make malware stand out from benignware.
Hence, light-weight HMDs can complement static analysis
tools [16] used by Google and other app stores to drive malware
down into more inefficient settings.
In summary, we make the following contributions:
1. Malware Synthesis. We deconstruct 229 malware binaries
from 2013–2015 to create a malware synthesis tool. An analyst
can use the synthesis tool to determine an HMD’s operating
range.
2. Record-and-replay Platform. Sherlock records and replays
1–2 hours each of real human input for 9 benign applications
and over 69 hours across 594 malware binaries. Without correct
replay at these time-scales, malware payloads will not execute
to completion.
4. Three case studies with new insights. We improve HMDs’
performance by 24.7% and 12.5% respectively for unsupervised
and supervised HMDs and show that HMDs detect stealthy
malware that evades static analysis tools.

Sherlock Detailed information on how to reproduce the ex-
periments can be found at https://github.com/Sherlock-2016.

II. MOTIVATION

Before we dive into the details of Sherlock in Sections III
and IV, we begin with the unique advantages of HMDs over
OS-level detectors and challenges in evaluating HMDs.

A. HMDs in a Network of Weak Detectors

HMDs (as well as OS-level detectors) are deployed in a
collaborative intrusion detection system (CIDS) that has two
components. On the server side, a platform provider (e.g.,
Google) executes benign and/or malware applications using
test and real user inputs, measures instruction statistics (using
performance counters for example), and creates a database of
computational models. On client devices, a light-weight local
detector samples performance counters to create run-time traces
from applications, compares each run-time trace to database
entries on the device, and forwards suspicious traces to a global
detector on the server.

Importantly, HMDs do not need to have 0% false positives
and 100% true positives—they only need to serve as an effective
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Fig. 2. Executing malware payloads. The off-the-shelf Geinimi.a malware
crashes immediately. Once fixed, Geinimi.a executes malicious payloads such
as stealing SMSs or contacts or downloading files.

filter for a global detector that can then use program analy-
sis [17], [18] or network-based algorithms [19], [20] to build a
robust global detector. We refer readers to Vasilomanolakis et
al. [13] for a survey on collaborative malware detectors.

B. Hardware vs OS-level detectors

HMDs are more trustworthy, light-weight, and hard to hide
from compared to detectors that use system call [4], [21],
middleware [22], or network based behavioral analysis [23],

HMDs’ are trustworthy since they can be isolated from
most of the OS (and Android middleware) and run inside a
hardware-based enclave [24], [25] or directly in hardware [7] –
secure against even user errors and kernel rootkits [3]. HMDs
can be battery efficient with feature extraction and detection
logic implemented using accelerators [7]. Finally, HMDs can
detect malware that leaves no system call trace – such as
rowhammer [9], [10], A2 [26], and side-channel attacks [12] on
desktops and, as we show in this paper, evasive mobile malware
that hides behind benign applications and requests no additional
sensitive permissions.

Interestingly, on mobile platforms, HMDs have comparable
detection rates to OS-level detectors (although we leave details
of this comparative experiment out of this paper). We find that
OS-level detectors that model system calls also reach detection
rates of almost 90% at false positive rates close to 10%. This
is close to our HMDs’ performance (in Section 5)—as a result,
HMDs can not just be more trustworthy than OS-level detectors
but be competitive in detection performance as well.

HMDs for desktops do not directly port over to mobile
platforms. Ozsoy et. al’s [7] hardware-accelerated classifiers
detect ∼90% of off-the-shelf desktop malware with 6% false
positive rate. Tang et. al’s [6] anomaly detector achieves 99%
detection accuracy for less than 1% false positives on a set of
PDF and Java malware. Such desktop HMDs, however, do not
work well for mobile platforms – we quantify Tang et. al’s
HMD against mobile malware in our first case study in Section
5 and build a 24.7% better HMD using Sherlock.

C. Challenges in Evaluating HMDs

The closest related work to ours – on HMDs for mobile
malware – is by Demme et al. [5], where the authors present a
supervised learning HMD that compares off-the-shelf Android

Fig. 3. Differential analysis of malware v. benignware. The plot shows principal
components of benign Firefox, Firefox with malware, and arbitrary Android
apps. Malicious Firefox’s traces are closer to Firefox than to random apps.

malware to arbitrary benign apps, yielding a 90:10 true positive
to false positive ratio. However, this methodology of using off-
the-shelf malware and comparing it to arbitrary benign apps is
fallacious, as we discuss next.
Adaptive malware. One challenge in evaluating detectors is
that malware developers can adapt their apps in response to
proposed defenses. For example, we find that simply splitting
a payload into multiple software threads dramatically changes
the malware’s performance-counter signature and training a
supervised HMD on the single-threaded execution yields a
very low probability of labeling the multi-threaded version
as malware. Adding delays, changing payload intensity, or
choosing an alternative victim application also throws off a
supervised HMD trained only on traces from existing malware.

Prior work analyzes malware samples categorized by fam-
ily names like CruseWin and AngryBirds-LeNa.C—this
does not tell an analyst why a malware binary was (not)
detected. Instead, we propose to determine why a particular
malware sample was (un)detectable, to anticipate how it can
adapt, and then to create a malware benchmark suite to identify
the operating range of the detector.
Correct execution. The second challenge is that mobile mal-
ware samples available online [27], [28], and used in prior
work, seldom execute ‘correctly’. Malware often require older,
vulnerable versions of the mobile platform, they may target spe-
cific geographical areas, include code to detect being executed
inside an emulator, wait for a (by now, dead) command-and-
control server to issue commands over the internet or through
SMSs, or in many cases, trigger malicious actions only in
response to specific user actions [29], [30].

Figure 2 shows that an off-the-shelf malware (Geinimi.a)
simply crashes on our Android board and thus looks distinct
from a benign MonkeyJump game’s trace. Prior work will mis-
classify this as a true positive. 20% of malware executions in
Demme et al’s [5] experiments lasted less than one second and
56% less than 10 seconds – in comparison, stealing a single
photo takes almost 3 seconds. Instead, we ensure that malware
executes ‘correctly’ – steals SMSs and contacts, and downloads

3



100 200 300 400

Time, sec

0

1K

2K

3K

In
d
. 
b
ra

n
c
h
e
s
 p

e
r 

3
0
 s

e
c

No User Input

Real User Input

Android Monkey

Fig. 4. Real user inputs create hardware level activity, while providing no
input or using Android’s input-generation tool (Monkey) creates a very small
signal.

an app – and aim to identify these payloads.
Appropriate Benignware and Real User Inputs. The third
challenge is to ensure appropriate differential analysis between
benign and malware executions. Prior work [5] trains detectors
on malware executions but tests against arbitrary benign ap-
plications. However, a benign app infected with malware looks
more similar to the underlying benign app than an arbitrary
benign app. Figure 3 plots the execution traces of Firefox,
Firefox with malware, and randomly chosen Android processes
along the first two principal components that retain ∼ 99% of
the signal. We see that the infected Firefox traces are much
closer to those of benign Firefox than to any other Android
process like netd. Hence, false positive rate of an HMD for
Firefox should be tested using a benign Firefox – testing the
HMD against arbitrary processes [5] will yield wrong results
that favor the HMD.

Further, Figure 4 shows that driving Android applications
using real user-input (red curve) has a major impact on the
execution signals compared to giving no input (blue curve)
or using the Android ‘Monkey’ app (light brown curve) to
generate random inputs. Behaviors with ‘no inputs’ or ‘Android
Monkey’ (blue and brown curves) can be easily captured by
a behavioral detector, and, as in the previous case, this leads
to overestimation of its actual detection performance. Hence,
we propose to test HMDs using malicious binaries against
appropriate benign apps while both apps are being driven using
real user-inputs.
Quantitative Comparison to Prior Evaluation Methods. We
have shown in this section that prior ‘black-box’ methods
yield traces that do not represent either malware or benignware
executions. The prior method has logical flaws – as a result,
20% of malware traces in [5] are shorter than 1 second, and
56% are <10s – and we deliberately eschew further quantitative
comparisons with Sherlock. Instead, our evaluation focuses on
case studies using Sherlock to yield new insights into building
effective HMDs.

III. SYNTHESIZING MOBILE MALWARE

The first major component of Sherlock generates a diverse
population of malicious apps. To do so, we first introduce a
taxonomy of high-level malware behaviors, and then use it to
create a set of representative malware whose hardware signals
have been explicitly diversified.
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Figures 5 and 6 show our manual classification of malware
into high level behaviors. We studied 53 malware families from
2012, 19 from 2013, 31 from 2014 and 23 from 2015 – a total
of 229 malware samples in 126 families – downloaded from
public malware repositories [28], [31], [32]. Our classification’s
goal is to identify orthogonal atomic actions and to determine
concrete values for these actions (e.g., amount and rate of data
stolen).

To classify malware, we disassembled the binaries (APKs
on Android) and executed them on both an Android develop-
ment board and the Android emulator to monitor: permissions
requested by the application, middleware-level events (such
as the launch of Intents and Services), system calls, network
traffic, and descriptions of malware samples from the malware
repositories. We describe our findings below.

A. Unique Aspects of Mobile Malware

Our key insight is that instead of trying to detect con-
ventional root exploits [33], [34], [35], we propose to detect
malicious payloads. Here, payloads refer to code that achieves
the malware developers’ goals, such as sending premium SMSs,
stealing device IDs or SMSs, etc. We observed root exploits in
only 10 of 143 samples in 2012 and 3 of 32 samples in 2013 –
we now take a closer look at the attack vectors mobile malware
rely on.

Mobile malware can successfully execute payloads due to
vulnerable third-party libraries. In one instance that affected
hundreds of millions of users, a “vuln-aggressive” ad-library
had a deliberate flaw that led to downloaded files being executed
as code [2]. Webviews, that enable Android apps to include
HTML/javascript components, are another major source of
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vulnerabilities [36] that allows payloads to be dropped to a
device. Apps with this vuln-aggressive library or Webviews are
otherwise benign and can be downloaded from app stores as
developer signed binaries, only to be compromised when in
use.

In other cases, errors by an app’s benign developers them-
selves can lead to malicious payloads being executed. Miscon-
figured databases even in popular apps like Evernote [37] and
AppLocker [38] (a secure data storage app) were vulnerable
to malicious apps on the device simply reading out data from
sensitive databases. In such cases, the malicious app could be
an otherwise harmless wallpaper app that constructs an ‘Intent’
(a message) to AppLocker’s database at run-time and exfiltrates
data if successful.

User errors are another cause for malware payloads executing
successfully at run-time. Malicious apps read data from an
online server, use it to construct a user prompt at run-time,
and thus request sensitive permissions such as access to SMSs
or microphone. Users often accept such requests [39] and once
authorized, apps can siphon off all SMSs or conduct persistent
surveillance attacks [40].

Worst of all, even the platform (Android) code can have
severe vulnerabilities that doesn’t require a conventional ex-
ploit. For example, the Master Key vulnerability [3] simply
involved an error in how Android resolves a hash collision
due to resource-names in a binary at install time v. execution
time. By packing the binary with a malicious payload such
that the install time check passes but the execution time loader
picks the other malicious payload, attackers could distribute
their payloads through signed apps in official app-stores.

Finding: analyze payloads instead of exploits. We conclude
that while there are many routes to getting a payload to execute
as part of a benign app, executing the payload is mandatory for
malware to win. Hence mobile HMDs shoud aim to distinguish
malicious payloads from benign app executions. The challenge
of detecting payloads is that payloads can look very similar
to benign app’s functionality. For example, if a previously
harmless AngryBirds game starts to comb through a database,
can we distinguish whether it is reading a user’s gaming
history (harmless) or a user’s SMS database (attack) using only
hardware signals.

B. Behavioral Taxonomy of Mobile Malware

At a high level we assigned every malicious payload to one or
more of three behaviors: information stealers, networked nodes,
and compute nodes (Figure 6).

Information stealers look for sensitive data and upload it to
the server. User-specific sensitive data includes contacts, SMSs,
emails, photos, videos, and application specific data such as
browser history and usernames, among others. Device-specific
sensitive data includes identifiers – IMEI, IMSI, ISDN – and
hardware and network information. The volume of data ranges
from photos and videos at the high end (stolen either from the
SD card or recorded via a surveillance app) to SMSs and device
IDs on the low end.

The second category of malicious apps requires compromised
devices to act as nodes in a network (e.g., a botnet). Networked

Synthetic 
Malware  

Parameters 
(number of items) 

Malware-
Specific 

Delay (ms) 

# of RPKG 
Mal. Apks 

Length 

per Action 

(sec) 

Inst. 

Count 

(Million) 

Steal files (4.2MB 
each) 

1, 15, 35, 50 0, 1K, 5K 12 2.86 50.97 

Steal contacts 25, 70, 150, 250 0, 10, 25 12 0.36 67.80 

Steal SMSs 200, 400, 700, 1.7K 0, 15, 40 12 0.12 25.90 

Steal IDs, GPS data size fixed 0, 200 2 4* 39.65 

Click fraud (pages) 20, 80, 150, 300 0, 1K, 3K 12 0.40 44.40 

DDos (slow loris) 500 connections 1, 40, 80, 200 4 425 49.70 

SHA1 pass. cracker 10K, 0.5M, 1.5M, 2.5M 0, 20, 40 12 2.8E-5 1.9E-2 

Fig. 7. Malware payloads: 4 info stealers, 2 networked nodes, and 1 compute
node. These settings represent a small but computationally diverse subset of
malware behaviors. Interestingly, small software actions have large hardware
footprints.

nodes can send SMSs to premium numbers and block the owner
of the phone from receiving a payment confirmation. Malware
can also download files such as other applications in order to
raise the ranking of a particular malicious app. Click fraud apps
click on a specific web links to optimize search engine results
for a target.

Given the advances in mobile processors, we anticipated a
new category of malware that would use mobile devices as
compute nodes; for instance, mobile counterparts of desktop
malware that runs password crackers or bitcoin miners on
compromised machines. This was confirmed by recent malware
that mines cryptocurrencies [41]. We use a password cracker
as a compute-oriented malware payload. The cracker’s task is
to recover sensitive passwords by making a guess, compute the
guess’ cryptographic hash, and compare each hash against a
secret database of hashed passwords.

Finding: Software-level actions are surprisingly long in
hardware. Figure 7 shows the specifics of each malware
behavior we currently include in Sherlock. Interestingly, atomic
malware payload actions take significant amount of time at
the hardware level for several payloads – e.g., stealing even
one SMS or a Contact requires 0.12s to 0.36s on average.
These constants inform the design of our performance counter
sampling durations and machine learning models in Section IV.
The last two columns in Figure 7 show the average length of
an atomic action in the malware payload (not counting delays
such as being scheduled out by the operating system), and the
instruction count per action (e.g. stealing 1 photo/contact/SMS,
clicking on 1 webpage in click fraud, opening 500 connections
and keeping them alive in a DDoS attack, generating 1 string
and computing its hash using SHA1).

C. Constructing Malware Binaries

We now describe the steps required to create a realistic
malware binary. Malware activation can be chosen from being
triggered at boot-time, when the repackaged app starts, as a
response to user activity, or based on commands sent over
TCP by a remote command and control (C&C) server. In
all cases, malware communicates back to the C&C server to
transfer stolen data or compute results. Sherlock’s configuration
parameters also specify network-level intensity of malware
payload in terms of data packet sizes and interpacket delays,
and device-level intensity in terms of execution progress (in
terms of malware-specific atomic functions completed). We
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App name Description # of 

Installs 

User Actions User Time 

(min) 

CPU Time 

(min) 

Inst. Count 

(Billion) 

Amazon internet 

store 

10M – 

50M 

searched for sporting goods; 
looked through 25 pages; 
clicked on 50 items  

81.15 32.40 1,914.97 

Angry 

Birds 

game 1M – 

5M 

played 9 rounds and 

completed 7 levels  

76.97 63.76 1,047.73 

CNN news app 5M –

10M 

browsed several categories 

of news and a few articles of 

each type 

58.04 11.60 254.85 

Firefox browser 50M – 

100M 

browsed 20 webpages 
starting from google.finance 

93.96 45.51 1,464.52 

Google 

Maps 

map 

service 

500M – 

1B 

browsed maps of a few cities 
and opened street views 

56.09 35.38 768.31 

Google 

Translate 

translator 500M – 

1B 

translated 30 words, 
searched history, tried 
handwriting recognition 

59.72 12.12 203.61 

Sana MIT 

Medical 

medical 

app 

U/A completed 5-6 
questionnaires 

111.41 11.37 145.94 

TuneIn 

Radio 

internet 

radio 

50M – 

100M 

switched amongst 6 channels 
and listened to radio 

78.10 26.17 407.99 

Zombie 

WorldWar 

game 1M – 

5M 

played 5 rounds and 
completed 4 levels 

91.62 88.40 2,261.99 

Fig. 8. Real user inputs on benign apps, with per app traces up to ∼2 hours and
∼2 trillion instructions. We choose complex apps and include a mix of compute
(games), user-driven (browsers, medical app), and network-centric (radio) apps.

chose concrete parameters for malicious payload based on an
empirical study of mobile malware as well as information about
benign mobile devices [42].

The generated malware has a top-level dispatcher service that
serves as an entry point to the malicious program; it parses the
supplied configuration file, launches the remaining services at
random times, and configures them. Malicious services can run
simultaneously or sequentially depending on the configuration
parameter. In some cases, the service that executes a particular
malicious activity can serve as an additional dispatcher. For
example, the service executing click fraud spawns a few Java
threads to avoid blocking on network accesses. Every spawned
thread is provided with a list of URLs that it must access.
Besides Android services, we register a listener to intercept
sensitive incoming SMS messages, forward them to C&C
server, and remove them from the phone if needed. This listener
simulates bank Trojans that remove confirmation or two-factor
authentication messages sent by a bank to a customer.

Most professional apps are obfuscated using Proguard [43]
to deter plagiarism. Proguard shrinks and optimizes binaries,
and additionally obfuscates them by renaming classes, fields,
and methods with obscure names. We applied Proguard to the
malware payloads (even when we did not use reflection and
encryption) to make the payloads look like real applications.

After a malware payload is created, it must be repackaged
into a baseline app. Repackaging malware into a baseline app
involves disassembling the app (using apktool), and adding
information about new components and their interfaces in the
application’s Manifest file. We then insert code into the Main
activity to start the top-level malware dispatcher service (whose
activation trigger is configurable), and add malicious code and
data files into the apk. We then reassemble the decompiled
app using apktool. If code insertion has been done correctly,
apktool produces a new Android app, which must be signed by
jarsigner before deployment on a real device.

IV. REAL USER-DRIVEN EXECUTION

Armed with a computationally diverse malware suite, we now
select a similarly diverse suite of benign apps, drive them with

long, real, user inputs, and extract hardware signals from them.
Figure 8 shows the apps that we run along with their inputs –
using these, we find that since the apps’ traces are so diverse,
we need to build HMDs customized for each app.

A. Benign Apps

Our main goal is to choose applications that represent popular
usage, and that require permissions to access resources like SD
card and internet connectivity. This ensures that the applications
are interesting targets for malware. Further, we ensure that the
apps cover a mix of compute (games), user driven (medical
app, news), and network (radio) behaviors, diversifying the
high-level use cases for apps in the benignware suite. Our
chosen app set includes native (C/C++/assembly), Android
(Dalvik instructions), and web-based functionality, varying the
execution environment of our benign app pool. We confirm
that this high-level diversity does indeed translate into diverse
hardware-level signals.

B. User Inputs

For each benign application, we created a workload that
represents common users’ behavior according to statistics
available online. For example, when exercising Firefox, we
visited popular websites listed on alexa.com. Automating this
is simple. For Angry Birds, we recorded a user playing the
game for multiple rounds and successfully completing several
levels. For the medical diagnostics app (Sana), we record users
completing several questionnaires, where each questionnaire
requires stateful interactions spread over several screens. Such
deep exploration of real apps is far beyond the capability of not
only the default UI testing tool in Android (Monkey [44]), but
also state of the art in input generation research [45]. Without
such deep exploration of benign apps, the apps’ hardware traces
will reflect only a dormant app and cause the malware signals
to stand out at test time but not in a deployed system.

For each benign app, we collect 6 user-level sessions (each 5–
11 min long) and use a heavily modified Android Reran [46] to
record and replay 4 of these sessions with random delays added
between recorded actions (while ensuring correct execution of
the app). These 10 user-level traces per app generate 56–111
minutes of performance counter traces across all apps.

Each benign app is then repackaged with 66 different pay-
loads to create 9 × 66 malware samples. To collect performance
counter traces, we replay one of the app’s user-level traces and
extract 5–11 minutes long performance counter traces for each
malware sample.

Figure 8 shows some interesting trends in benign traces.
While Sana commits 145 Billion instructions in 111 minutes,
Zombie WorldWar commits 2,261 Billion instructions in 91
minutes – clearly, Sana is much more user-bound while Zombie
WorldWar is compute-heavy. CNN and Angry Birds are similar
to Zombie WorldWar, where TuneIn Radio lies between Sana
and Zombie WorldWar in instructions committed.

Finding: HMDs have to be application-specific. Interest-
ingly, as we show in our evaluation (Section V), the compute
intensity of CNN and Zombie WorldWar results in them having
the worst detection rates among all the apps in our suite. On
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Fig. 9. HMD results for Angry Birds with click fraud operating at three (increasing) intensities. Since HMD is trained on benign AngryBirds, a low dark-line
shows that the HMD detects malware as a low probability state.

the other hand, even though TuneIn Radio is more intense
than Sana, TuneIn Radio exposes malware better. We find that
this is because the Radio has more regular behavior while
Sana executes in short, sharp bursts. Sherlock’s realistic replay
infrastructure and user-input traces are key to producing these
insights into HMDs’ performance.

C. Extracting Hardware Signals

We now describe our measurement setup for precise repro-
ducibility. The measurement setup requires careful setup and
correctness checks since it is difficult to replay real user inputs
to the end once delays and malware payloads are added.
Devices. Our experimental setup consists of an Android devel-
opment board connected to a desktop machine via USB, which
in turn stores data on a server for data processing and construc-
tion of ML models. The desktop machine uses a wireless router
to capture internet traffic generated by the development board.
The traffic collected from the router is analyzed to ensure that
benignware and malware execute correctly.

We use a Samsung Exynos 5250 equipped with a touch
screen, and a TI OMAP 5430 development board, and we
reboot the boards between each experiment. We ran all exper-
iments on the Exynos 5250 because some common apps like
NYTimes and CNN crashed on OMAP 5430 for lack of a WiFi
module, but repeated Angry Birds experiments on the OMAP
5430 to ensure that our results are not an artifact of a specific
device.
Performance counter tracing. We used the ARM DS-5
v5.15 framework and the Streamline profiler as a non-intrusive
method for observing performance counters. DS-5 Streamline
reads data every millisecond and on every context switch, so it
can ascribe performance events to individual threads. However,
in DS-5 Streamline extracting per process data can only be done
using its GUI – we automate this process using the JitBit [47]
UI automation tool.
Choice of performance counters. We used hardware perfor-
mance counters to record five architectural signals: memory
loads\stores, immediate and indirect control flow instruction
counts, integer computations, and the total number of ex-
ecuted instructions; and one micro-architectural signal: the
total number of mispredicted branches. We collected counter
information on a per process basis as matching programmer-
visible threads to Linux-level threads requires instrumenting
the Android middleware (i.e., is non-trivial), and because per-
process counters yielded reasonable detection rates. We leave

exploring the optimal set of performance counters for future
work.
Overhead of counter sampling. We found that sampling
counters with 1 ms time resolution incurs less than 0.3%
slowdown on the CF-Bench mobile benchmark suite. Prior
work also reports low overheads: Demme et al report 5%
overhead at 25k cycles per sample, while Tang et al report 1.5%
at 512k retired instructions per sample. Beyond sampling, the
detection logic itself is fairly simple – while we describe our
HMDs in the next section, Ozsoy et. al have shown that a neural
net HMD costs less than 5% in area and delay to an AO486
CPU (with overheads expected to be smaller for larger CPUs).
Ensuring correct execution. We ensured that the malicious
payload was executed correctly on the board for each trace.
Specifically, synthetic malware communicated with a Hercules
3-2-6 TCP server running on the desktop computer, which
recorded a log of all communication. The synthetic malware
itself printed to a console on the desktop computer (via adb)
as well as to DS-5 Streamline when running each malicious
payload.

For experiments with off-the-shelf malware, we developed
an HTTP server to support custom (reverse-engineered) duplex
protocols for C&C communication. If we allowed malware to
communicate to its original server, which was not under our
control, we captured network traffic going through the router.
We checked the validity of performance counters readings ob-
tained via DS-5 Streamline with specially crafted C programs,
which we compiled and ran natively on the boards.

D. Constructing and Evaluating HMDs

Using benign and malware traces collected as described
above, an HMD analyst can then train and test a range of
HMD algorithms. For example, Figure 9 shows one of the
HMD algorithms we present in a case study in Section V-A. The
HMD is an anomaly detector and the figure plots the likelihood
that the current trace is going through a known phase—a low
probability thus indicates potential malware (the dark line)
while higher probabilities indicate benignware (light gray lines).
Increasing the payload’s intensity lowers the probability even
further. By tuning the probability at which a time interval is
flagged as malicious (or by training a classifier to learn this),
an analyst can trade-off false positives and true positives.

Importantly, we evaluate true positives and the detection
threshold using only the time windows that contain malware
payload execution. We do not use time windows where our
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Before After
Fig. 10. Distribution of load/store events in Angry Birds before and after power
transform. Power transform does not make malware payloads on Android more
discernible from benign behavior, whereas Tang et al. [6] show that it separates
exploits from benign apps in Windows.

repackaging code and dispatcher service executes, since we
would like the HMD to be evaluated solely using payloads and
not exploits. We do not use time windows before or after the
payload is complete, because if an HMD raises an alert when
the payload is not executing, the alert may in reality be a false
positive that will get recorded as a true positive. Prior evaluation
methods do not separate out malware payload intervals and may
have this error. On the other hand, to measure false positives, we
use benign traces only and hence use the entire trace durations
for each experiment. Finally, we use 10-fold cross validation
on an appropriate subset of our data to evaluate HMDs.

V. CASE STUDIES USING SHERLOCK

We show how malware analysts can use Sherlock through
three case studies. (1) We use malware payload sizes in
Section III to tune the machine learning features (100ms v.
sub-ms in prior work) for an unsupervised HMD. Our HMD
out-performs prior work designed to detect short-lived exploits
by 24.7% on the area under curve (AUC) metric (Section V-A).
(2) Sherlock’s taxonomy of malware in Section III can be
used to train a supervised learning based HMD eficiently.
This ‘balanced’ HMD outperforms alternative HMDs – that are
trained on subsets of malware behaviors – by 12.5% AUC when
tested on new variants of the behaviors. (3) Surprisingly, we
show that our unsupervised HMD can detect malware that uses
obfuscation to evade the best known static analyses. Hence,
HMDs and static analyses are complementary and can drive
malware payloads towards inefficient implementations.

A. Improving Unsupervised HMDs

We begin by quantifying why prior work designed to detect
exploits may not yield the best HMDs to detect long-lived
payloads.
Exploit-based ML features do not expose payloads (Fig-
ure 10). Tang et al. [6] present an HMD specifically designed
to detect the multi-stage exploits that characterize Windows
malware. The HMD samples performance counters every 512k
cycles, and uses a power transform on performance counter data
to separate benign and malicious time intervals. Then, a one-
class SVM (ocSVM) is trained on short-lived features – i.e., on
each sample as a non-temporal model and using 4 consecutive
samples to train a temporal model – to label anomalous time
intervals as malicious.
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Fig. 11. Comparison of power transform + ocSVM (prior work) and Discrete
Wavelet Transform + ocSVM (this work). Our detector has 24.7% better area
under curve metric (AUC) than prior work.

We find that power transform does not have the same effect
on mobile malware payloads—payloads look very similar to
benignware traces even after a power transform. For example,
Figure 10 shows the distribution of load-store instruction count
per time interval for benign Angry Birds (labeled ‘Clean’), com-
pared to time intervals in Angry Birds infected with different
malware payloads (e.g., file stealer, click fraud, DDoS, etc)—
before and after a power transform. The distributions are shown
as a box-and-whiskers plot, where the box edges are 25th and
75th percentiles, the central mark is the median, the whiskers
extend to the most extreme data points not considered outliers,
while the outliers are plotted individually in red. Data in both
plots have been normalized to the range of benign Angry Birds’
values. We use the standard Box-Cox power transformation to
turn performance counter traces into an approximately normal
distribution. Since the distributions of malware and benignware
in Figure 10 overlap significantly, training an ocSVM on this
dataset will yield a poor HMD as we show next.
Payload-centric ML features. We designed a new HMD
whose features reflect our findings about mobile malware
payload sizes in Figure 7. Specifically, we attempt to capture
program effects at the scale of 100ms intervals, i.e., closer to
the time required for atomic actions like stealing information
or networking activity.

We then extract features from each 100ms long time interval
using Discrete Wavelet Transform (DWT) and use the wavelet
coefficients as a feature vector for the time interval. The wavelet
transform can provide both accurate frequency information
at low frequencies and time information at high frequencies,
which are important for modeling the execution behavior of
the applications. We use a three-level DWT with an order
3 Daubechies wavelet function (db3) to decompose a time
interval. We also used the Haar wavelet function with similar
detection results.

Finally, we use multiple feature vectors to construct two
models: (a) a bag-of-words algorithm followed by a ocSVM,
and (b) a probabilistic Markov model. Both these models are
simple to train and compute at run-time, and hence serve as
good local detectors (and a good baseline for more complex
models such as neural nets that are harder to train).
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1) Bag-of-words Anomaly Detector: The bag-of-words
model treats 100ms time intervals as words and a Time-to-
Detection (TTD) window as a document. We experimented
with a range of words and TTDs, finding a codebook of 1000
words and TTD = 1.5 seconds to yield good results. The bag
of words algorithm maps each TTD window into a 1000-entry
histogram, and trains a one-class SVM on benign histograms.
We parameterize the one-class SVM so that it has ∼20%
percent false positives.
Comparison with power transform — ocSVM HMD. Fig-
ure 11 compares our bag-of-words based ocSVM with one
that uses a power transform using the area under ROC curve
(AUC) metric. Note that AUC is a relative metric to compare
classifiers, whereas the operating range measures an HMDs’
robustness to atomic-action-sized mutations in malware. The
bag-of-words model outperforms prior work for each category
of malware behavior and by an average of 24.7% higher AUC
across all malware.
Operating range of DWT — bag-of-words — ocSVM. Fig-
ure 12 shows the operating range for the bag-of-words model.
Each cell in the matrix corresponds to a malware payload action
(y-axis) and benign app (x-axis) pair. The malware payloads
are grouped by category and within each category, increase
in size from top to bottom and in delay from right to left.
These experiments use parameters from Figure 8. The intensity
of the color – from light green to dark red – corresponds to
the detection rate, which is computed as the number of raised
alarms versus the total number of alarms that could be raised.

Figure 12 shows that the bag-of-words model achieves, at
∼20% false positive rate: 1) surprisingly high true positive
rate for dynamic, compute intensive apps such as Angry Birds
(99.9%), CNN (84%), Zombie WorldWar (93%), and Google
Translate (92.4%); and 2) ∼80% true positive rate for both
Amazon and Sana.
Bag-of-Words model HMD space overheads. Bag-of-Words
models require 639KB – 1,229KB space with an average of
840KB and less than 2% of the average size of Android apps.2

2) Markov-model based Anomaly Detector: We present an
alternative HMD to show that HMD models should be chosen
specific to each application, and that there is an opportunity to
apply ensemble methods to boost detection rates.

Our first-order Markov model based HMD assumes that
the normal execution of an application (approximately) goes
through a (limited) number of states (program phases), and the
current state depends only on the previous state. The goal is
to detect malware if its performance counter trace creates a
sequence of rare state transitions (as shown in Figure 9).

The HMD uses DWT to extract features as in the bag-of-
words model, but maps them to a smaller number of words
(i.e., states in the Markov model) using k-means clustering. We
use the Bayesian Information Criterion (BIC) score [48] to find
that 10 to 20 states is a good number across all benign apps.
Using observed state transitions derived from training data, we
empirically estimate the transition matrix and initial probability
distribution (through Maximum Likelihood Estimation). For

2https://crowdsourcedtesting.com/resources/mobile-app-averages
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Fig. 12. The operating range of Bag-of-words HMD. In each rectangle, the
size of malicious payload grows from the top to the bottom, and the amount
of delay decreases from left to right (H=High, M=Medium, Z=Zero delay). If
color goes from light to dark within a rectangle, then the detection threshold
(i.e., the lower end of the operating range) lies inside the rectangle.
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Fig. 13. The operating range of Markov model HMD. Interestingly, the Markov
model performs worse than the simpler bag-of-words model for compute
intensive and dynamic apps (e.g., Angry Birds, CNN, and Zombie WorldWar).

detection, the Markov model HMD tracks the joint probability
of a sequence of states over time and if malware computations
create anomalous hardware signals (i.e. this probability is below
a threshold for 5 states in our model), the HMD raises an alert.

Operating range of DWT — Markov model HMD. Figure 13
shows the results-matrix for the Markov model based detector.
All the results are shown for a false positive rate of 20-25%.

Increasing the size of each payload action makes malware
more detectable – this can be seen as the colors being more
intense towards the bottom part of most rectangles. Increasing
the delay between two malicious actions does not have a
similarly predictable effect – SMS stealers in Angry Birds
is a rare pair where detection rate increases with delay. This
is interesting since intuitively, adding delays between payload
actions should decrease the chances of being detected. However,
these experiments indicate that for most malware-benign pairs,
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detection depends on how each payload action interferes with
benign computation rather than delays between the payload
actions.

The most important take-away from Figure 13 is that for
most malware-benignware pairs, the detectability changes from
light green to dark red as we go from top to bottom in the
rectangle – this shows that our malware parameters in Figure 13
are close to the detection threshold, i.e. the lower end of the
HMD’s operating range for the current false positive rate. There
are a few exceptions as well, such as click fraud, DDoS, and
password crackers hiding in CNN; and DDoS in Angry Birds,
Maps, Translate, and Zombie World Wards. For these cases,
the payload intensity has to be increased further to find their
detection threshold.
Markov model HMD space and time overheads. Markov
models representing the behavior of the benign apps vary from
1.2KB to 6.7 KB, with an average size of 3.2KB – they are thus
cheap to store on devices and transfer over cellular networks. Its
time to detection ranges between 1.2 seconds to 4.4 seconds and
about 2.5 seconds on average. This means that the system can
detect suspicious activities at the very beginning, considering
that exfiltrating even one photo takes 2.86 sec on average.

3) HMDs should be app-specific: Interestingly, the Markov
model works significantly better than bag-of-words for TuneIn
Radio – with a 10% FP: 90% TP rate compared to 38%FP:
90% TP rate respectively – but performs significantly worse
on apps like Angry Birds. In summary, a deployed HMD will
benefit from choosing the models that work best for each
application, but due to their different TP:FP operating points,
will also benefit from using boosting algorithms in machine
learning [49].

B. Improving Supervised HMDs

Sherlock can significantly improve performance of supervised
learning based HMDs; specifically, by training the HMDs on
a ‘balanced’ training data set that contains malware with each
high-level behavior identified in the Section III-B. Note that
supervised learning techniques can be trained to recognize
specific malware families [5] (i.e. a multi-class model) or
to coalesce all malicious feature vectors (FVs) into a single
label (i.e., a 2-class model)—we evaluate both categories in
Figure 14.

To quantify Sherlock’s ‘balancing’ effect on the resulting
performance of a classifier, we conduct the following exper-
iment. We partition the entire malicious set of FVs into a
training set and two testing sets such that a training set contains
malicious FVs of a particular type (e.g. SMS stealer, file stealer,
DDoS attack and etc). The remaining FVs are placed in two
non-overlapping testing sets. The first testing set includes the
same type of FVs as the training set, while the second one
comprises of FVs not in the training set. Finally, we add to
each training/testing set benign FVs whose number is equal to
the number of malicious FVs in the corresponding set.

Thus, for every partition we conduct two experiments: train
a classifier on a training set and test it on the two testing sets.
We present the results for Random Forest classifier using ROC
curves (left) and AUC metric (right) in Figure 14 to compare

relative performance of a classifier under different training
and testing data sets. Each ROC curve is labeled as ‘training
malware type’ – ‘testing malware type’ (‘others’ means all
malware types that are not included in the training set). And
the red ROC curve shows the result of training and testing on
a ‘balanced’ malware set.

We show relevant ROC curves in Figure 14 along with the
AUC metric for all ROC curves on the right. The light brown
bars correspond to AUC of the experiments where we train and
test a classifier on the same malware type, i.e. we test it on the
first testing set. The blue bars demonstrate classifier’s ‘cross’
performance, i.e. we test it on the rest malware types (on the
second testing set). All results are computed using 10-fold cross
validation.

We experimented with several supervised learning algorithms
– e.g., decision tree, 2-class SVM, k-Nearest Neighbor, Boosted
decision trees, and Random Forest (RF)– and present the results
for RF classifier because it demonstrated the best performance
on our data set.

The common trend that we observed across all nine apps and
all malware types is that the RF classifier has significantly better
performance when testing on the same malware types (solid
lines are higher than the dashed ones). The only exception is
when the RF HMD is trained on DDoS malware, it surprisingly
achieves better performance on other malware behaviors than
on the in-class malware behaviors.

This can be explained by high stealthiness of our implemen-
tation of a DDoS attack [50] – each mobile device only opens
HTTP connections to a target server and keeps them alive with
minimal further requests. Thus, in real apps that also make
network connections, DDoS should be virtually undetectable
using HMDs. From machine learning perspective, DDoS and
benign apps are likely closer to each other, while other malware
like info-stealers and compute nodes are farther away in feature
space, therefore we observe an opposite trend in the case of
DDoS experiment in Figure 14.

Further, we trained a classifier on a balanced set of malicious
data that included all malware behaviors in Sherlock. The solid
line with dots (in the ROC plot) and the column on the far right
(in the AUC bar graph) in Figure 14 show that showing some
variants of each behavior enables the RF to achieve a higher
detection rate (on even new variants) than both prior work as
well as one-class SVMs. The RF HMD can, for example, detect
close to 85% of the malware with only 5% false positives
compared to our anomaly detectors’ similar true positives for
∼20% false positive rates. Finally, the RF HMD trained on a
balanced data set yields 97.5% AUC whereas RF HMDs trained
on per-behavior inputs yield AUCs of 91% and 85% when
tested against the same or new malware behaviors respectively
(averaged across all behaviors).
Operating range of Random Forest HMD. Figure 15 shows
the detection results matrix for the RF HMD across the entire
malware payload (Y-axis) and benignware (X-axis) categories
for a fixed false positive rate of 5%. The key results are
that RF detects most payloads except for detecting click fraud
and DDoS attacks in CNN, Firefox, and Google Translate. It
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Fig. 14. Training supervised learning HMD on a balanced set of malware behaviors yields best results.
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Fig. 15. Operating range of 2-class Random Forest HMD: more effective than
anomaly detectors when trained on a balanced dataset of all malware behaviors.

is likely that DDoS attacks – which involve a sequence of
infrequent HTTP requests – look very similar to benign apps
and are not well suited to be detected using HMDs. Indeed, all
three HMDs – bag-of-words, Markov model, and RF – do a
poor job of detecting DDoS attacks in most apps. On the other
hand, RF consistently detects information stealers and compute
malware (password cracker) across most apps. For apps with
regular behavior (Radio) or sparse user-driven behavior (Sana),
RF can detect all but the smallest of malware payloads.

In summary, Sherlock helps an analyst develop a robust
HMD—first by dissecting existing malware to identify orthogo-
nal behaviors, and then by training the HMD on a representative
set of malicious behaviors. In the end, using the operating
range, Sherlock informs the analyst of the type of behaviors
the HMD is well/poorly suited at detecting.

C. Composition with Static Analyses

Reflection is a powerful method for writing malware that
evades static program analysis tools used in App Stores to-
day [51]. Interestingly, we show that malware that uses re-
flection to obfuscate its static program paths in turn worsens
its dynamic hardware signals, and improves HMDs’ detection
rates.

1 Code snippet extracted from Obad.apk
2 Method: com.android.system.admin.
3 loOcccoC.loOcccoC(final boolean b)
4

5 dynamically construct class name
6 String class_name = oCIlCll(594, 24, -27);
7 return a class object
8 Class<?> c = Class.forName(class_name);
9 dynamically construct the name of a method

10 String method_name = oCIlCll(250, 33, -51);
11 return an object associated with the method
12 Method m = c.getMethod(method_name,
13 new Class<T>[] { Long.TYPE });
14 m.invoke(value, array);

Fig. 16. Code shows Java reflection and string encryption in Obad malware
that foils static analysis tools.
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Java methods invoked via reflection are resolved at runtime,
making it hard for static code analysis to understand the
program’s semantics. At the same time, reflection alone is not
sufficient – all strings in the code must also be encrypted,
otherwise the invoked method or a set of possible methods
might be resolved statically.

To illustrate an actual malicious use of Java reflection and
encryption, we show a code snippet (Figure 17) from Obad
malware [29]. The code decrypts class and method names (lines
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6 and 10) by calling the method oCIlCll(). As a result,
static analyses [18], [52] either do not model reflection or con-
servatively over-approximate the set of instantiated classes for
method_name (line 10) and target methods for the invoke
function (line 14). Due to control-flow edges that may never be
traversed, static data-flow analysis becomes overly conservative,
and static analyses end up with high false positive rates (or more
commonly, with malware that goes undetected).

We augmented our synthetic malware with reflection and
encryption similar to Obad’s implementation. Static analysis of
our malware does not reveal any API methods that might raise
alarms—we tested this using the Virustotal online service which
ran 38 antiviruses on our binary without raising any warnings.

Figure 17 shows results of using the Markov model HMD
on the 66 synthetic malware samples from Figure 7 augmented
with reflection and encryption, and embedded into each of
AngryBirds, Sana, and TuneInRadio. We see that in Angry
Birds and Sana the detection rate of the malware that uses
both reflection and encryption is significantly higher because
reflection and encryption are computationally intensive and
disturb the trace of the benign parent app (i.e., more than the
same malware without reflection and encryption). We do not
see the same trend for TuneInRadio because its detection rate
was already quite high, so the additional impact of reflection
on TuneIn Radio stays within the noise margin. We conclude
that HMDs complement current static analyses and can poten-
tially reduce the pressure on computationally intensive dynamic
analyses with a larger trusted code base [17].

VI. CONCLUSIONS

HMDs are being studied by processor manufacturers like
Qualcomm and Intel. As computer architects explore new
hardware signals and accelerators to improve security in general
and malware detectors in particular—our work lays a solid
methodological foundation for future research into HMDs for
mobile platforms. In particular, our approach of identifying why
a detector succeeds and fails, instead of black-box experiments
with malware binaries, is crucial. Indeed, prior work has pointed
out the pitfalls of using machine learning in a black-box manner
for network-based intrusion detection systems [53]. Our future
work will include applying Sherlock’s white-box methodology
to software detectors and efficiently composing them with
HMDs.
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“Taxonomy and survey of collaborative intrusion detection,” ACM Com-
put. Surv., vol. 47, no. 4, pp. 55:1–55:33, May 2015.

[14] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated
attacks and collaborative intrusion detection,” Computers & Security,
vol. 29, no. 1, pp. 124 – 140, 2010.

[15] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers a case
study on pdf malware classifiers,” in Network and Distributed Systems
Symposium, 2016.

[16] “Trendlabs a look at google bouncer,” http://blog.trendmicro.com/
trendlabs-security-intelligence/a-look-at-google-bouncer.

[17] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10, 2010.

[18] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014.

[19] D. Dash, B. Kveton, J. M. Agosta, E. Schooler, J. Chandrashekar,
A. Bachrach, and A. Newman, “When gossip is good: Distributed proba-
bilistic inference for detection of slow network intrusions,” in Proceedings
of the 21st National Conference on Artificial Intelligence - Volume 2, ser.
AAAI’06. AAAI Press, 2006, pp. 1115–1122.

[20] Y. Xie, H.-A. Kim, D. R. O’Hallaron, M. K. Reiter, and H. Zhang,
“Seurat: A pointillist approach to anomaly detection,” in The International
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2004.

[21] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu,
and E. Kirda, “A quantitative study of accuracy in system call-
based malre detection,” in Proceedings of the 2012 International
Symposium on Softre Testing and Analysis, ser. ISSTA 2012.
Neork, NY, USA: ACM, 2012, pp. 122–132. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336768

[22] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in Security and Privacy
in Communication Networks - 9th International ICST Conference,
SecureComm 2013, Sydney, NSW, Australia, September 25-28, 2013,

12

http://dx.doi.org/10.1109/ICTAI.2013.53
http://dx.doi.org/10.1109/ICTAI.2013.53
http://doi.acm.org/10.1145/2485922.2485970
http://dl.acm.org/citation.cfm?id=2665671.2665726
http://doi.acm.org/10.1145/2810103.2813708
http://dx.doi.org/10.1007/978-3-319-30806-7_9
http://doi.acm.org/10.1145/2338965.2336768


Revised Selected Papers, 2013, pp. 86–103. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-04283-1 6

[23] L. Invernizzi, S. Miskovic, R. Torres, C. Kruegel, S. Saha, G. Vigna,
S. Lee, and M. Mellia, “Nazca: Detecting malware distribution in
large-scale networks,” in 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014, 2014. [Online]. Available: http://www.internetsociety.org/
doc/nazca-detecting-malware-distribution-large-scale-networks

[24] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software solutions,”
in Proceedings of the 2Nd International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP ’13. New
York, NY, USA: ACM, 2013, pp. 11:1–11:1. [Online]. Available:
http://doi.acm.org/10.1145/2487726.2488370

[25] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for cpu based attestation and sealing,” ser. HASP ’13, 2013.

[26] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in Proceeding SP ’12 Proceedings of the 2012 IEEE
Symposium on Security and Privacy, 2016.

[27] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceeding SP ’12 Proceedings of the 2012 IEEE
Symposium on Security and Privacy, 2012, pp. 95–109. [Online].
Available: http://dl.acm.org/citation.cfm?id=2310710

[28] “Mobile malware database,” http://contagiominidump.blogspot.com.
[29] “Obad malware,” http://securityintelligence.com/diy-android-malware-

analysis-taking-apart-obad-part-1.
[30] “Geinimi malware,” https://nakedsecurity.sophos.com/2010/12/31/geinimi-

android-trojan-horse-discovered/.
[31] “Malware database,” http://malware.lu.
[32] “Malware database,” http://virusshare.com.
[33] “Universal android rooting procedure (rage method),”

http://theunlockr.com/ 2010/10/26/universal-android-rooting-procedure-
rage-method/.

[34] “Gingerbreak apk root,” http://droidmodderx.com/ gingerbreak-apk-root-
your-gingerbread-device.

[35] “Exploid,” http://forum.xda-developers.com/showthread. php?t=739874.
[36] E. Chin and D. Wagner, “Bifocals: Analyzing webview vulnerabilities in

android applications,” in Revised Selected Papers of the 14th International
Workshop on Information Security Applications - Volume 8267, ser. WISA
2013. New York, NY, USA: Springer-Verlag New York, Inc., 2014, pp.
138–159.

[37] “Evernote patches,” http://blog.trendmicro.com/trendlabs-security-
intelligence/evernote-patches-vulnerability-in-android-app/.

[38] “Applock vulnerability,” http://blog.trendmicro.com/trendlabs-security-
intelligence/applock-vulnerability-leaves-configuration-files-open-for-
exploit.

[39] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[40] “Android rat malware,” http://www.itpro.co.uk/malware/22627/android-
rat-malware-invades-mobile-banking-apps.

[41] “Mobile bitcoin miner,” https://blog.lookout.com/blog/2014/04/24/
badlepricon-bitcoin.

[42] M. Kazdagli, L. Huang, V. Reddi, and M. Tiwari, “Morpheus: Bench-
marking computational diversity in mobile malware,” in Workshop on
Hardware and Architectural Support for Security and Privacy, 2014.

[43] “http://developer.android.com/tools/help/proguard.html.” [Online]. Avail-
able: http://developer.android.com/tools/help/proguard.html

[44] “Ui/application exerciser monkey,” http://developer.android.com/tools/help
/monkey.html.

[45] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: ACM, 2013, pp. 224–234. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491450

[46] “Record and replay for android,” http://www.androidreran.com.
[47] “Jitbit macro recorder,” http://www.jitbit.com/.
[48] D. Pelleg and A. W. Moore, “X-means: Extending k-means with effi-

cient estimation of the number of clusters,” in Proceedings of the 7th
International Conference on Machine Learning, 2000.

[49] R. Schapire and Y. Freund, Boosting: Foundations and Algorithms. MIT
Press, 2012.

[50] “Slow loris attack,” http://www.slashroot.in/slowloris-http-dosdenial-
serviceattack-and-prevention.

[51] “Dissecting android’s bouncer,” https://www.duosecurity.com/
blog/dissecting-androids-bouncer.

[52] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 229–240. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382223

[53] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in In Proceedings of the IEEE
Symposium on Security and Privacy, 2010.

13

http://dx.doi.org/10.1007/978-3-319-04283-1_6
http://www.internetsociety.org/doc/nazca-detecting-malware-distribution-large-scale-networks
http://www.internetsociety.org/doc/nazca-detecting-malware-distribution-large-scale-networks
http://doi.acm.org/10.1145/2487726.2488370
http://dl.acm.org/citation.cfm?id=2310710
http://doi.acm.org/10.1145/2046707.2046779
http://developer.android.com/tools/help/proguard.html
http://doi.acm.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2382196.2382223

