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Abstract
Sidecars are used by organizations to implement advanced oper-
ational and security features in cloud environments. Since side-
cars interpose on network traffic to provide these functionalities,
they can degrade critical service level metrics such as latency and
throughput. However, the precise impact of sidecars on such key
metrics remains unclear. Our evaluation quantifies service-layer
overheads as well as the micro-architectural implications of using
sidecars in orchestration platforms – and evaluate these overheads
across a range of sidecar configurations.

We show that the absolute overheads of the sidecars are indepen-
dent of theworkloads and depend on the filters and themicroservice
topology. This allows us to model performance predictably as we
compose sidecar filters. Our analysis indicates very low reuse of
the instruction caches (poor misses per kilo instructions) despite
high-frequency reuse of sidecars. Increasing private caches from
256KB to 1.25MB across processor generations sees only a 10%
improvement in the frontend stalls – this is due to high indirect
branch misses and thrashing from more aggressive prefetchers and
predictors that degrade the L1-I cache MPKIs up to 40%. Our study
also finds that utilizing a few large pages can reduce iTLB misses
and page walks by 80% at the cost of modest memory overheads.

CCS Concepts
• General and reference → Performance; Evaluation; • Com-
puter systems organization→ Cloud computing.
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Figure 1: Platform engineers use service mesh for critical
fleet wide security and networking functions. We quantify
the impact of sidecar components on instruction caches and
TLB to model composable performance overheads and iden-
tify optimization opportunities. Our analysis shows that we
can reduce iTLB miss rate by 80% using 5 hugepages.

1 Introduction
Cloud frameworks like service-meshes [14, 40, 52] and container
orchestrators [45, 48, 73] have enabled large scale deployment of
distributed microservice applications [35, 86]. Orchestration relies
on a robust control plane to provide features such as efficient sched-
uling [13], transparent service discovery [30, 90], and on-demand
workload and resource scaling [34, 88, 96]. While control plane
developments have helped application developers provide higher
quality of service [74] and improve datacenter utilization [12, 83],
data plane components allow platform engineers to implement
service-level functionality to improve security and improve moni-
toring of deployed workloads. Sidecars accomplish this by applying
sets of filters to all traffic associated with the microservice. Con-
tainerized sidecar processes do not require application rewrites or
recompilations, and can implement complex logic for application
layer security and management, making them the preferred choice
over in-kernel [14] or library-based [57, 76] sidecars.

Scaling-up data plane policies from implementing simple cross-
service encryption to a larger number of more complex mechanisms
is severely curtailed due to the unpredictable and significant perfor-
mance impacts of filter choices on application workloads. Fig. 1 de-
picts the role of sidecars in cloud environments and the performance
penalties associated with its use. Service mesh vendors [15, 42, 53]
report 2×-6× variance in latency, while academic studies [99] report
an increase in latency and utilization by 30-185% and 41-92% across
different benchmark applications. This can cost millions in addi-
tional computing resources [76] to support production workloads.
Our study confirms these variances with the instruction and CPU

https://doi.org/10.1145/3721465.3721862
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Figure 2: Our framework can deploy and profile various con-
figurations, and provides analytics.

usage increasing by up to 76% and 91% respectively for simple TCP
filters. Furthermore, we note that seemingly simple changes, such
as a switch from TCP to HTTP filters for access control, result in a
2.4× decrease in throughput. A methodical understanding of fac-
tors influencing sidecar performance and resource usage is needed
for operators to navigate the deployment choices with a balance
between performance and operational functionalities.
In this paper we present a methodical study of sidecars in modern
cloud frameworks. Our characterization improves upon existing
white-box methodology used in literature [99] by a) incorporat-
ing diverse and complex sidecar filters and b) microarchitectural
profiling of orchestration frameworks (Fig. 2).

Existing studies, primarily conducted by practitioners [42, 53, 62],
focus on performance degradation for applications and lack com-
prehensive analysis for different filter configurations. Therefore,
these studies offer isolated findings with minimal comparisons
between frameworks, forcing operators to conduct their own eval-
uations of custom sidecar configurations. In contrast, by leveraging
a broad and diverse set of filters, our study enables us to model
sidecar performance as a combination of individual filters and other
components, such as packet reads/writes and protocol parsing.

Platform operators also aim to minimize performance overheads
while deploying such rich filters in bulk across production environ-
ments. Since sidecars and filters operate at microsecond scales, it is
imperative to understand their interaction with the processor micro-
architecture to systematically analyze and mitigate performance
overheads. Our micro-architectural profiling of Envoy sidecars [28]
show that different filters spend up to 25% of all cycles waiting for
valid instructions, caused by a poor reuse of the instruction cache
(iCache) – indicated by 45-75 MPKI, and stalls incurred due to very
high instruction translation lookaside buffer (iTLB) misses. Binary
instrumentation reveal a high iCache working set size (WSS) of
200kB-270kB for TCP and HTTP based filters. Further, an irregular
access pattern results in sidecars, touching over 300 4k pages each
request which contributes to a high iTLB miss rate. We explore
solutions of mixed page sizes based on access pattern and show
that using just 4-6 2M-hugepages can help reduce the iTLB miss
rates by 50%-85% in simulation environments.
We make the following key contributions in our paper:
(1) We improve on the profiling methodology for evaluating or-

chestration frameworks by incorporating a diverse and rep-
resentative set of sidecar filters. This provides visibility into

performance critical components of sidecars as well as account
for performance variability across different types of filters.

(2) We provide the first microarchitectural analysis of sidecar per-
formance in modern orchestration frameworks. We show how
such characterizations can reveal critical microarchitectural
bottlenecks and guide domain-specific solutions.

We open-source our framework and toolkit for broader use at
https://github.com/utspark/sidecar-characterization, that can in-
form platform engineers and architects of performance trade-offs
and motivate future optimizations and cloud-native architectures.

2 Background
2.1 Microservices, Functions and Service Meshes
Microservices rely on cloud orchestration frameworks to abstract
server nodes and handle tasks such as scheduling, fault tolerance
and service discovery. Increasing cluster sizes, service volume and
complex capabilities, increases the communication trafficmulti-fold,
making it challenging to debug [58] and update infrastructures.
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Figure 3: BookInfo [8] deployed
with a service mesh.

Service meshes solve
this challenge by giving
platform engineers flex-
ibility to augment mi-
croservices with rich fil-
ters that provide opera-
tional visibility, applica-
tion security and man-
agement. A service mesh
easily conforms to any
microservice topology by
injecting data plane sidecars to manage intra-service communica-
tion as depicted in Fig. 3. In contrast to microservice applications
and function workloads, sidecars are persistent infrastructure com-
ponents that have a consistent runtime behavior, unlike application
workloads that exhibit runtime differences and FaaS functions that
are ephemeral processes. Frameworks like Knative [47] include
sidecars in the same pod as a FaaS function, and hence sometimes
scale down to zero. However, during warm states, the runtime be-
havior of infrastructure sidecar processes are separate from user
workload functions and exhibit well-defined patterns. Recent sur-
veys [16, 17] found over 60% of organizations use service meshes,
making it essential to study their performance.

2.2 Sidecars
Sidecars processes are co-located with each microservice instance
within a shared network namespace called pod. This allows the
sidecar to intercept any traffic for the service instance and apply
configured set of filters. These filters are generally aimed towards
network management (packet management [37, 39, 72], load bal-
ancing [22, 23], service discovery [30, 90]), security (mTLS [60],
isolation [82], service-level authorization [7, 29, 65]) or observabil-
ity (tracing [21, 43, 100], logging [4, 89], stats [50]). To enable rich
application layer filters [27], sidecars usually run in the user-space.

eBPF-based [14] sidecars limit functionality due to kernel restric-
tions, while consolidation of sidecars [3] raises security challenges.
Although the use of sidecars as libraries [57, 76] offers performance

https://github.com/utspark/sidecar-characterization
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Figure 4: Life of a request between two services via sidecars.

benefits without sacrificing functionality, its adoption is low be-
cause it needs recompilation of binaries and services. Hence we
expect process-based sidecars to continue to dominate in the future.
Packet lifetime: Sidecars intercept both ingress and egress traffic
for an application (Fig. 4), resulting in a single request between
two service instances being broken into three network requests.
Outbound packets from service A are written to network buffers
before it is read by its sidecar. The sidecar processes the packet,
invoking any configured TCP and HTTP/gRPC filters on its egress
path. The sidecar completes its action by utilizing an HTTP or TCP
router to write back to the network stack with service B as the
destination. The packet undergoes a similar life-cycle before it is
sent out to the destination over the network.

3 Motivation
Service meshes provide a powerful tool to platform engineers to
independently and dynamically configure services with operational
logic as a set of filters, allowing operators to move from traditional
network management to rich security and telemetry tasks.

However, platform engineers face a significant challenge in de-
ployment of these filters because of the cost of using these filters are
often large and unpredictable. Black-box performance analysis are
often application specific and cannot be generalized. The variance
in overheads is high across different filters making it challenging
for architects and engineers to either predict the performance or
work towards optimizing the penalty.

3.1 ‘Side’cars are often the dominant modules
We study user-visible metrics like tail latency and throughput to
identify the service level degradation experienced due to the use
of sidecar processes. We evaluate this using an off-the-shelf ser-
vice mesh (Istio [40]) with a default predefined sidecar configura-
tion [41]. We use three commonly used [33, 99] benchmark appli-
cations – DeathstarBench’s Hotel Reservation [35], BookInfo [8]
and Online Boutique [66]. We also quantify these overheads as
we scale the cluster to larger sizes. Figure 5 quantifies the p90 tail
latency of applications and associated networking activities with
and without a sidecar configured orchestration. “Base app" includes
the application processing time and all network related latency in
the system. “Sidecars" only quantifies the sum of latencies incurred
when a request is being processed in a sidecar associated with any
of the microservices. We notice that applications experience 5-25ms
of tail latency increase across benchmark applications, indicating
that sidecar proxies can sometimes dominate the overall application
workload. Although larger clusters see an increase in overall appli-
cation latency due to networking overheads, the penalty incurred
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Figure 5: Performance measurements across applications
with different cluster size show no significant change in the
performance penalty of using sidecars in larger cluster sizes.
Throughput degradation of using sidecars is shown normal-
ized to maximum QPS without service mesh.

due to sidecars in each application remains unchanged as we go to
larger clusters. The variance in overheads are due to differences in
application topologies and sidecar configurations that we explore
in detail in Section 5. Increasing compute demands results in higher
utilization and a throughput degradation of up to 45%. Since using
sidecars decreases throughputs, we show a normalized view of the
throughput in Fig. 5, where the “sidecars" block is lower than “base
app". This demand compounds as we move towards applications
with 1000s of microservices [76] and is fueled by two trends of the
industry. First, agile development encourages smaller application
components [55] and “offload" any operational task to the orches-
trator and the sidecar components. This leads to communication
traffic increase that results in higher time spent in sidecars rather
than application processing. Second, flexibility of dynamic config-
uration comes with the complexity of design in sidecar processes
which require more CPU cycles and resources. With notable pro-
cessing times for sidecars, it is imperative for service providers and
architects to understand the micro-architectural impacts to design
efficient systems.

3.2 Sidecar’s performance variance
Our analysis reveals two key factors affecting these variances:
Sidecar Configuration A sidecar can be customized with one or
more sets of filters during application deployment. Depending on
the filter’s compute requirements and complexity, it can affect the
overall performance quite differently. Figure 6 shows the overall
latency and throughput experienced by a simple echo server when
we configure the sidecar with a set of commonly used TCP (TCP,
RBAC, TLS) and HTTP (HTTP, Log and Mix) filters. We discuss de-
tails about these filters in Section 4. Our results indicate that across
a similar protocol (TCP or HTTP), latency shows little variance.
However, based on complexity, throughput degrades by about 2.4×
as we switch from TCP to HTTP protocols.
Processor micro-architecture Figure 6, evaluates latency and
throughput of a simple echo-server applications configured with
different sidecar filters across two machines with host processors
that are 5 generations apart. Across both generations, we see that
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Figure 6: Tail latency vs throughput for various configura-
tions across processor generations. Throughput decreases by
2.4× when operators switch to HTTP-based from TCP-based
policies for service access control.

throughput change significantly as we configure sidecars with dif-
ferent policies. Although, the trend across the policies are same,
newer processors experience a 3× boost in maximum query ca-
pacity as seen in Fig. 6. We also observe a distinct improvement
of around 20% on tail latency across policies too. This motivates
our interest in evaluating and understanding micro-architectural
implications on sidecars.

4 Experimental Setup
Our methodology includes diverse sidecar filters, applications and
deployment settings like platform hardware, cluster size and mes-
sage sizes to quantify sidecar performance.
Applicationmicro-benchmarks:We study sidecar’s performance
using two single-service microbenchmarks.
(1) Socketify EchoServer [85]: Fast Python based echo-server – aug-

mented to modify response size based on the request parameter.
(2) MySQL [61]: A relational database configured with synthetic

tables for use with SQL query filters.
Filter Microbenchmarks:We use Envoy [28] as our sidecar, given
its widespread adoption in service meshes [14, 40, 49] and extensive
library of 80+ filters. For our evaluation, we select 9 representa-
tive filters – 2 TCP filters and 7 application-layer filters, including
rate-limiting, TLS, logging, and MySQL. These cover a range of
compute and I/O intensive tasks. While these filters suffice for our
characterization, the testbed can easily extend to other filters.
(1) TCP: Simple L3/L4 Router.
(2) RBAC: TCP-IP/Port based access control policies to rejects pack-

ets from all or range of IP/Ports. Variants used: “Accept All",
“Reject 1", “Reject 100" and “Reject 1000".

(3) SQL: MySQL filter that parses queries and emits metadata.
(4) HTTP: Simple L7 API Router.

Node Intel Xeon E5-2683v3 Intel Xeon Silver 4314
Cores 28-core dual socket 16-core (SMT Off)
I-Cache 32KB L1 32KB L1
D-Cache 32KB L1;256KB L2 48KB L1;1.25MB L2
iTLB 128-entry 4-way Shared 128-entry 8-way Shared
LLC 70 MB (56 cores) 24 MB (16 cores)
Freq. 2GHz (no cstates) 2.4GHz (no cstates)

Memory 256G 2133MHz DDR4 128G 3200MHz DDR4
Kernel Linux 5.4 (ubuntu20) Linux 5.15 (ubuntu20)

Table 1: Node Specifications.

(5) Header Read: Reads packets headers and sets sidecar metadata
appropriately. It does not modify the packet.

(6) Ratelimit: Limits the request rate to a service. Filter terminates
excess requests with error responses.

(7) IP Tag: Modifies packet and inserts new headers with value
based on client’s IP. Variants used: “IP Tag1",“IP Tag 5",“IP Tag
10" based on number of inserted headers.

(8) Logging: Configurable logs of service invocations.
(9) TLS: Operator configuration commonly used to provide en(de-

)cryption of the payload at pod boundaries.
(10) HTTP Mix 1: Combined Ratelimit and IP Tag.
(11) HTTP Mix 2: All policies combined except TLS.
Hardware and software details: All of our experiments and re-
sults are conducted on Cloudlab [26] using Intel Xeon Silver 4314
(IceLake) nodes. Details about node configuration can be found
in Table 1. For brevity we limit our analysis to IceLake machines
here and provide extended evaluations on dual socket Intel Xeon
E5-2683 v3 (Haswell) in Appendix B. For container orchestration
we use Istio (v1.20.3) [40] on Kubernetes (v1.28), and wrk2 [93]
as our load generator operating on the worker node to mitigate
datacenter network latency. All benchmark applications run at max-
imum throughput while the microbenchmark experiments run at
varying the query rates to achieve low (20%), medium (50%) and
high (100%) CPU utilization. Our study utilizes a 100-byte pay-
load for most of the experiments as shown to be a representative
message size in prior studies [99]. However, we also study the im-
pact of larger message sizes in Appendix B. All microbenchmark
studies have sidecar processes pinned to 1 CPU core with no SMT
enabled to reduce interference from workloads and benefit from
a warm micro-architecture. We use perf (performance counters),
strace and pmu-tools [71] to collect profiling information and
Intel PIN [54](v3.30-98830-1d7b601b3) to collect execution traces.

5 Characterization and Evaluation
Here we discuss the evaluation results of sidecar processes by ad-
dressing two noted limitations of existing studies – 1. Lack of diverse
sidecar policies by incorporating representative filters in our mi-
crobenchmark for comprehensive study, and 2. Micro-architecture
visibility gaps by evaluating extensive low-level metrics across plat-
forms, revealing patterns for design exploration and optimization.

5.1 Application Topology
Service meshes incorporate sidecar processes for each service in-
stance, making a user request traverse multiple sidecars as the
request gets processed by the microservice application. Each user
request pays the performance overhead of each sidecar process
in its call path, that aggregates to significant overhead for large
applications. Prior work [97] have shown such call paths to be
typically 8-10 microservice long. Since the microservice graph and
communication patterns do not influence sidecar behavior as we
scale-up applications, we do not see a significant change in sidecar
overheads as we scale out to large cluster sizes. We also note that
sidecar processes being decoupled from underlying microservice,
exhibiting performance behavior that is influenced by configured
policies rather than the service they are associated with. We detail
these experiments and results in Appendix A.



Understanding Sidecars in Cloud Orchestration SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

TC
P 

Ro
ut

er

Ac
ce

pt
 A

ll

Re
je

ct
 1

Re
je

ct
 1

00

Re
je

ct
 1

00
0

SQ
L

TL
S

HT
TP

 R
ou

te
r

He
ad

er
 R

ea
d

Ra
te

-L
im

it

IP
 Ta

g(
1)

IP
 Ta

g(
5)

IP
 Ta

g(
10

)

Lo
gg

in
g

HT
TP

 M
ix

 1

HT
TP

 M
ix

 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
st

ru
ct

io
ns

 P
er

 R
eq

ue
st

×105 Sc Read
OS Read
Sc Write
OS Write

Pkt Proc
Prot Parse
Hdr EnDec

Poll
Filter
Other

Inst
Cycle
IPC

0

1

2

3

4

5

6

Cy
cle

s P
er

 R
eq

ue
st0.780.760.72

0.67

0.94

0.44
0.38

0.570.57
0.630.610.590.620.590.570.59

×105

Figure 7: Performance overhead across different sidecar con-
figurations per request. Filters contribute from 1%-10% cycles
overhead, while protocol parsing and OS write are the largest
contributors of overhead.

5.2 Configuration Microbenchmarking
As we saw in Section 2, a network packet traverses through var-
ious sidecar components before it is processed by the operator-
configured filters. We categorize this lifecycle into functional com-
ponents described in Table 2.We use diversemicrobenchmark filters
described in Section 4 to understand their performance impact.

Fig. 7 shows instruction and cycle distribution across bench-
marks. HTTP policies spend 50% of CPU cycles on protocol parsing,
with write syscalls as the next largest contributor. For TCP policies,
write syscalls dominate. Most components, except filters, show uni-
form latency across microbenchmarks. Filters, though small (<5%
instruction overhead), can use up to 15% of CPU cycles.

Although cycles and instructions overhead go hand-in-hand, we
see that the instruction-per-cycle (IPC) metric reveals efficiency
differences in the TCP and HTTP filters. IPC estimates the instruc-
tion throughput of a processor and is indicative of architectural
execution efficiency. Modern processors are designed for higher
IPC (1.5-2 [69]) for benchmark applications by leveraging locality
and program patterns but our results show TCP policies exhibiting
an IPC of 0.7-0.9, while HTTP-based policies are lower than 0.6.

These results bring out two interesting facets of how filters
and configuration can affect overall performance. First, we see a
gradual decrease in IPC across the TCP and HTTP policies as we
increase complexity of the filters (e.g. larger allow/deny lists and
filter-mixes). But as we increase the filters significantly in “Reject

Component Description

OS Read Kernel network stack read on packet receive.
Sidecar Read Userspace packet read by sidecar.
Packet Processing TCP/IP packet processing in sidecar.
HTTP Protocol Parse HTTP protocol parsing in sidecar for L7 filters.
Header En/Decoder En(De-)coder logic for any header-specific filter.
Sidecar Filter User defined filter logic applied to messages.
Event Poll I/O notif processing & polling event handler.
Sidecar Write Reassembly of packet & invoke write syscall.
OS Write Update destination & write to network buffer.

Table 2: Functional components of a sidecar proxy.

Filter cycles Total cycles
Policy Actual Estimate Actual Estimate
HTTP - - 350.5k -

Header Proc. 9.67k - 364.6k 360.2k(+1.22%)
Rate Limit 4.16k - 331.7k 354.7k(-8.2%)
IP Tag (1) 8.52k - 338.7k 359.1k(-8.7%)
Logging 20.45k - 358.9k 370.9k(-9.6%)

HTTP Mix 1 12.9k 12.68k(1.72%) 373.9k 363.4k(-0.66%)
HTTP Mix 2 41.83k 42.8k(-2.33%) 439.1k 392.3k(1.23%)
Table 3: Actual and estimated cycles for HTTP filters.

1000", the IPC increases because of highly reused logic that benefits
from both cache reuse and branch predictors. Other components see
the program behavior switch quicker than the hardware is able to
warm up and predict. Second, Table 3 shows that the performance
overhead of filters is additive in nature. Composing the cycle laten-
cies of individual filter components gives a close upper-bound on
the cycle latency for aggregated filter configuration.

5.3 Micro-architectural Investigation
Hardware events can yield fine-grained visibility into IPC bottle-
necks.
Topdown Analysis: A top-down approach quantifies the time
spent across various stages in a processor, namely 1. Frontend:
which fetches and decodes instructions; 2. Backend: which pro-
cesses and computes the instruction data; 3. Retiring: which finally
commits processed instructions and 4. Speculation: which repre-
sents pipeline cycles lost due to a bad branch prediction. Fig. 8
plots the cycle breakdown across the four stages of a processor
pipeline which reveals more than half of cycles are spent in the
frontend irrespective of the filter and load. This indicates lack of
valid instructions, resulting in stalls for useful instructions.
Frontend Behavior:We investigate frontend stalls by analyzing
instruction cache misses and branch behavior, including branch
misses and branch types. Misses per kilo-instructions (MPKI) met-
rics indicate efficiency of micro-architectural components with
high-performance systems aiming for lowmiss rates. Priorwork [35]
report about 10-12 MPKI for iCaches in microservices workloads.

Our experimental results in Fig. 9 reveal that sidecar processes
exhibit a significantly higher iCache miss rate of up to 75 MPKI on
Icelake machines. Fig. 10 indicates these machines face up to 13%
cycles stalled in the processor frontend waiting for valid instruc-
tions, likely due to iCache misses. Our analysis also show that of
all fetched instructions that encounter an iCache miss, only 25%
actually execute and retire. This is indicative of a large number
of outstanding misses prefetch from a wrong target and end up
thrashing the iCache, resulting in higher miss rate.

Branches Total Miss
All Retired 56.5k 4.5k
Cond. Taken 12.14k 1.3k

Cond. Not Taken 20.64k 1k
Indirect 3.6k 2k

Near Taken 35.4k 3.6k
Table 4: Breakdown of branch ac-
cesses and misses per request.

Interestingly, we
observe low branch
miss rates across
platform generations,
with under 5 MPKI
on Icelakemachines,
as shown in Fig. 9.
In the interest of
space, we list the
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types of branch instructions for one policy (RateLimit) in Table 4.
Branches account for less than 20% of instructions, mostly condi-
tional. Indirect branches, under 5% of all branches, cause over 50% of
branch misses. Poor predictability and deep pipeline resolution lead
to costly flushes, validating that mispredicting indirect branches has
high performance cost due to wasted cycles and iCache pollution.

In summary, we identify two key contributors to frontend bot-
tlenecks. First, indirect branches dominate branch misses, severely
impacting performance by wasting pipeline slots, triggering deep
wrong-path executions, and polluting the iCache, leading to higher
cache misses and stalls. While newer processors with larger L2
caches (1.25MB) mitigate some fetch miss costs, aggressive prefetch-
ers still result in elevated L1 miss rates. Second, simple branch pre-
dictors perform well due to the prevalence of conditional branches.
Enhancements targeting indirect branch prediction could yield sig-
nificant improvements in frontend efficiency.

5.4 Dynamic code analysis
Our characterization highlights two avenues to improve perfor-
mance for sidecar developers and architects aiming to provide effi-
cient cloud-native hardware – reducing instruction fetch latency
and improving branch misprediction costs.
Instruction fetch:Microservice applications typically use a con-
tainerized sidecar for each service instance. While each request
processing requires some heap space for thread local storage, most
of the code are read-only pages shared as copy-on-write. Envoy
sidecars [28] reports two large shared code regions spanning 21MB
and 40MB along with two private writable areas that are 2288kB
and 248kB. However, each request typically touches a very small
portion of the entire memory, called the working set size (WSS).

Existing tools for calculating working set sizes estimate by count-
ing the referenced flags in the page map kept by Linux systems.
However, for highly segmented applications like the sidecars, it
does not provide accurate estimates. Our evaluation instruments
the proxy during the run time using Intel PIN [54] to get an instruc-
tion trace. This trace is then used to calculate the actual number of
cache lines used by the sidecar process. Since PIN only instruments
retired instructions we get a lower bound estimate of the WSS.

Although prior work [6] show an estimate of 4MB of WSS for
cloud functions, our analysis puts a sidecar’s WSS at 275-300kB
across various microbenchmark policies – small enough for LLCs

and large L2s but too large for L1! We also note that these cache
lines map to about 350 4kB pages in the envoy binaries and shared li-
braries.Wemap the access pattern of the hot code regions in Fig. 11a.
We also note huge-page boundaries for these instruction traces.

350 page accesses impart significant pressure on small L1-I iTLBs
(64-entry 8-way 4k TLB, 8-entry fully associative hugepage iTLBs
per thread [38]). Performance counters show about 1.5k iTLBmisses
per request of which about 1.2k misses do a page walk which can be
an expensive process and introduce frontend stalls. We use a simple
TLB simulator with an LRU (least recently used) replacement policy
to simulate the iTLB behavior using extracted instruction traces.
We note a similar rate of ≃ 1.1k miss per request. Simulation results
show that over 95% of the iTLB accesses occur in under 20 pages.
However, 19 of these pages get swapped out as often as 6-60𝑥 in
each request shown in Fig. 11b. Fig. 11c modifies the simulator to
estimate iTLB misses while using hugepages. We see that misses
decrease up to 80% when we use all huge pages (2M) but such a
model would have very high memory usage. Using a combination
of 4k and 2M huge pages on demand, reduce iTLB misses by up to
80% and 90% with 5 and 6 huge-page entries respectively. These
have a moderate memory overhead of 8.5MB-11MB.

We also profile the WSS of Envoy functions to understand the
cache requirements of high latency sections like the protocol pars-
ing. Protocol parsing uses ≃ 40-50kB of instruction memory indicat-
ing a constant thrash of caches that provides no discernible iCache
reuse. While these are larger than current iCaches, future genera-
tions are slated to support 64k of iCaches. Core isolation with cache
partitioning for critical sections can provide performance boosts.

6 Related Work
Microservices and Functions Rise of distributed application de-
signs [45] have been driven by advances in containerization [18, 24,
56] and orchestration frameworks [25, 48] which provide users
with a serverless experience by abstracting the hardware layer.
Microservices differ from traditional cloud services, posing chal-
lenges in tail latency [32, 63, 73], performance [34, 86, 94], relia-
bility [68], and security [2, 9, 10, 31]. Functions, popularized by
AWS Lambda, excel in short, parallel tasks but struggle with startup
latency. Significant prior research aims at understanding FaaS plat-
forms [78, 81, 87, 88, 92, 98], performance [19, 77, 79], and isola-
tion [1, 44, 83, 91]. However, learning frommicroservices workloads
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Figure 11: Instruction and iTLB access patterns across a sidecar invocation.

do not apply to sidecars. Microservices [35] and functions [79] have
low frontend bottlenecks on warm executions, and checkpointing
benefits such workloads but fails to address sidecars, which exhibit
high frontend stalls even in back-to-back executions.
Understanding cloud platforms Characterization studies of or-
chestration platforms [75, 80, 99] reveal significant communication
layer overheads, prompting novel communication schemes [19, 84]
and network optimizations [80]. While we observe similar issues,
our focus is on hardware offload designs for infrastructure compo-
nents. Warehouse-scale studies [36, 46] highlight overheads from
system tasks like compression, allocation, and growing instruction
footprints, aligning with our observations on sidecar behaviors.
However, sidecars, being highly replicated, require targeted pro-
gram analysis and hardware optimizations for significant gains. Ex-
isting performance models [99] rely on tail-latency metrics, which
vary across architectures. We propose microarchitectural metrics
as a more accurate basis for predictive models and are working to
integrate these into existing frameworks.
Offloading sidecarsWith efforts from academia [5, 51, 59, 70, 95]
and industry [11, 64] to offload infrastructure tasks, there is an
opportunity to bring insights from our micro-architectural eval-
uations for accelerating sidecar functionality to enable large and
rich logic filters. Recent works [67] have also looked into offloading
software network switches for high-performance data planes.

7 Conclusion
This paper brings attention to performance penalties associated
with the use of service meshes and sidecars. We provide an in-depth
characterization that quantifies sidecar overheads to build a perfor-
mance model for predictable overheads when composing sidecar
configurations. We also explore hardware bottlenecks in support-
ing such frameworks highlighting severe frontend bottlenecks and
evaluating solutions that can reduce iTLB miss rates up to 85%.
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Figure 13: Sidecar latency per request in Bookinfo. Kernel
accounts 20% latency; userspace don’t vary across services.

A Appendix: System Level Implications
This section explores system behavior across various deployment
settings to isolate and quantify the variability in performance degra-
dation in sidecars to provide visibility into the trade-offs of using
service meshes across various operational settings.

For these experiments, we use three benchmark workloads and
two benchmark configurations for sidecars as provided by Istio [41].

W1 BookInfo [8]: Small library web-app consisting of 4 services that
allows users to get reviews and information about books.

W2 Online Boutique [66]: E-commerce app consisting 11 services
that allows browsing, shopping cart, and a payment page.

W3 Hotel Reservation [35]: An app with 17 services providing hotel
search based on location, rates and availability.

C1 Default: Configuration combines HTTP-based RBAC filters, stats
collection, header management [20], and some request tracing.

C2 Demo: Showcase configuration that combines all ‘Default’ filters
while logging and tracing all requests.

A.1 Deployment configurations and settings
Weevaluate how real world datacenter settings and operator choices
impact the overall service level objective using our benchmark ap-
plications. In Fig. 5, we analyze P90 latency and throughput over-
heads as cluster sizes scale from 1 to 5 nodes. Latency remains
consistent but slightly increases due to cross-node network factors
while throughput slightly degrades at larger scales, independent of
sidecars. To quantify penalties, we measure CPU instructions and
cycles, which reflect the additional work and resources consumed
in Fig. 12. Experimental setups compare benchmark applications
with and without service mesh, where sidecars are configured with
no traffic control policy with minimal TCP-based access control
and observability policy – ensuring similar application behavior.

Application behavior remains steady across cluster sizes if nodes
have sufficient resources. However, deployment settings show vari-
able degradation. The "Default" configuration incurs 20–85% cycle
and 13–75% instruction penalties, while the "Demo" configuration
nearly doubles these overheads. Sidecar performance remains con-
sistent across cluster sizes for each benchmark but varies across
applications and configurations. Instructions and cycles emerge as
key metrics for precisely and uniformly measuring overheads.
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Figure 12: Instructions and cycle counts across different clus-
ters and different sidecar configurations shows constant over-
head across cluster sizes, but varies across different configu-
ration profiles. Instruction overhead vary from 13%-76% for
‘default’ and 23%-162% for ‘demo’ while cycles see a range of
21%-91% for ‘default’ and 28%-128% for ‘demo’.

A.2 Application Topology
Here we evaluate how service topologies of applications might im-
pact sidecar latency. Fig. 13 plots the latency distribution of system-
calls for all invocations of sidecar instances in the BookInfo appli-
cation. We use request_in(e-)gress and fanout_in(e-)gress
terms to indicate ingress and egress paths to and from a service
instance from the downstream client or upstream instances respec-
tively. We find that requests typically take between 200-250 ms for
a sidecar invocation, except ProductPage. ProductPage’s sidecar
that handles external ingress, adds 200–400 ms for socket setup and
longer egress times due to a 6KB HTML payload.

Sidecar invocation counts per user request vary for different
services in an application, e.g. 6 for ProductPage, 4 for Review and
2 each for Rating and Detail in BookInfo app. Fig. 14 shows average
instructions and cycles per sidecar invocation across benchmarks,
confirming uniform performance penalties across services. "De-
fault" configurations incur 200–300K instructions and 500–600K cy-
cles, while "Demo" configurations face higher penalties of 400–500K
instructions and 650–800K cycles. Frontend and Search (Hotel Reser-
vation) and Review (BookInfo) are outliers due to amortization
effects due to higher invocation counts, unlike ProductPage and
Home, which handle HTML payloads, raising their averages.
Takeaway: Performance varies by topology and call path but side-
car latency is predictable per configuration. Overall penalty corre-
lates with sidecar policies and configurations.
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B Appendix: Extended Characterization Results
B.1 Comparing hardware generations
We use this section to present our microarchitectural evaluations
on an older Haswell machine and compare them to the results we
previously discussed for Icelake servers. Figs. 15 to 17 plots branch
and instruction cache miss behavior, indicating significant fron-
tend stalls and bottlenecks. Although, these trends align with our
analysis in Section 5.3, we would like to point to a few interesting
observations.

We note that the iCache fetch stalls for Haswell are much higher
(12-25%) compared to newer generation processors. However, the L1
iCache MPKI trends lower than Icelake servers. This indicates that
better predictors and prefetchers do not work well for infrastructure
components like sidecars, and might even contribute to larger cache
pollution. We also note that significantly larger private L2 caches
helps with such workloads that are common, repetitive and have
large instruction footprints.

B.2 Message Size
Across our benchmark applications, we note a diverse range of
message sizes from a few bytes of message for Details (in BookInfo)
to 532KB of HTML data for Online Boutique’s home page. This
section provides visibility into the performance overhead experi-
enced by the sidecar components as we vary the message sizes.
Our microbenchmarks evaluate a large range of messages starting
from 16KB up to 1MB. Figure 18 plots the number of instructions
and cycles as we increase the payload sizes across a set of filter
configurations. At large payload sizes, we see an interesting inter-
play between the performance impact and the underlying micro-
architecture. For brevity, we omit components that do not show
much variance. “Protocol Parsing” also shows low variability since
these program phases mainly processes the packet header portions
of the messages which remains unaffected in this setting.
Filter: Both the HTTP and TCP filters work on packet headers
and see no variance with message sizes. Data intensive configu-
rations like TLS encounter a steep increase in computation and
latency since this filter works on the entire payload message for
encryption/decryption before further processing.
OS Read/Writes: OS read and write functions also show similar
exponential growth in instructions and cycles. However, we notice

that the IPC remains fairly consistent until 16KBmessage size, when
it starts to sharply decrease to almost 0.25 IPC for 1MB payloads.
This is interesting because the IPC drop aligns with our cache sizes.
Both kernel read and write functions iterate over the entire packet
while copying between kernel and userspace buffers. This results in
both cold and capacity misses in private data caches as we increase
the packet sizes above 16KB. TLS write filter deviates from the
observed trends. With a single application-sidecar instance, packet
decryption happens at kernel read on req-ingress, and encryption
happens at kernel write on req-egress. Only the response from
sidecar to client undergoes a variable message encryption which
gets reflected on the performance of kernel write. Since this is the
only filter that actively works on data, the data is actually in the
caches when the kernel writes attempts to copy and hence it sees
an elevated and constant IPC.
Sidecar Read/Writes: These functions mainly initiate a read/write
system call on event triggers and updates buffer data for further
processing in the sidecar. As they do not work on the data them-
selves, we see a nearly constant IPC. With a slightly predictable
loop behavior with higher packet sizes, we notice an uptick in the
IPC across different configurations.
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