
Understanding Sidecars in Cloud Orchestration
Prateek Sahu

prateeks@utexas.edu
The University of Texas at Austin

Austin, USA

Shijia Wei
shijia@utexas.edu

The University of Texas at Austin
Austin, USA

Neeraja J. Yadwadkar
neeraja@austin.utexas.edu

The University of Texas at Austin
Austin, USA

Mohit Tiwari
tiwari@austin.utexas.edu

The University of Texas at Austin
Austin, USA

Abstract
Sidecars are used by organizations to implement advanced oper-
ational and security features in cloud environments. Since side-
cars interpose on network traffic to provide these functionalities,
they can degrade critical service level metrics such as latency and
throughput. However, the precise impact of sidecars on such key
metrics remains unclear. Our evaluation quantifies service-layer
overheads as well as the micro-architectural implications of using
sidecars in orchestration platforms – and evaluate these overheads
across a range of sidecar configurations.

We show that the absolute overheads of the sidecars are indepen-
dent of theworkloads and depend on the filters and themicroservice
topology. This allows us to model performance predictably as we
compose sidecar filters. Our analysis indicates very low reuse of
the instruction caches (poor misses per kilo instructions) despite
high-frequency reuse of sidecars. Increasing private caches from
256KB to 1.25MB across processor generations sees only a 10%
improvement in the frontend stalls – this is due to high indirect
branch misses and thrashing from more aggressive prefetchers and
predictors that degrade the L1-I cache MPKIs up to 40%. Our study
also finds that utilizing a few large pages can reduce iTLB misses
and page walks by 80% at the cost of modest memory overheads.

CCS Concepts
• General and reference → Performance; Evaluation; • Com-
puter systems organization→ Cloud computing.

Keywords
Service Mesh, Orchestration, Performance

ACM Reference Format:
Prateek Sahu, Shijia Wei, Neeraja J. Yadwadkar, and Mohit Tiwari. 2025.
Understanding Sidecars in Cloud Orchestration. In The 3rd Workshop on
SErverless Systems, Applications and MEthodologies (SESAME’ 25), March
30-April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3721465.3721862

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SESAME’ 25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1557-0/2025/03
https://doi.org/10.1145/3721465.3721862

Service Meshes

Sidecar Sidecar

Cloud Workloads

DB

Control Plane

Sidecars

Web
Services

Ephemeral Persistent

Application
Developer

Platform
Engineer

Prior Work

Security
Privacy
Networking
Telemetry

Lambda

Filters

Packet Proc

- 1.5-2.5x
latency
- 2.4 variance in
throughput
- Working Set
Size: 200-300kB

Figure 1: Platform engineers use service mesh for critical
fleet wide security and networking functions. We quantify
the impact of sidecar components on instruction caches and
TLB to model composable performance overheads and iden-
tify optimization opportunities. Our analysis shows that we
can reduce iTLB miss rate by 80% using 5 hugepages.

1 Introduction
Cloud frameworks like service-meshes [14, 40, 52] and container
orchestrators [45, 48, 73] have enabled large scale deployment of
distributed microservice applications [35, 86]. Orchestration relies
on a robust control plane to provide features such as efficient sched-
uling [13], transparent service discovery [30, 90], and on-demand
workload and resource scaling [34, 88, 96]. While control plane
developments have helped application developers provide higher
quality of service [74] and improve datacenter utilization [12, 83],
data plane components allow platform engineers to implement
service-level functionality to improve security and improve moni-
toring of deployed workloads. Sidecars accomplish this by applying
sets of filters to all traffic associated with the microservice. Con-
tainerized sidecar processes do not require application rewrites or
recompilations, and can implement complex logic for application
layer security and management, making them the preferred choice
over in-kernel [14] or library-based [57, 76] sidecars.

Scaling-up data plane policies from implementing simple cross-
service encryption to a larger number of more complex mechanisms
is severely curtailed due to the unpredictable and significant perfor-
mance impacts of filter choices on application workloads. Fig. 1 de-
picts the role of sidecars in cloud environments and the performance
penalties associated with its use. Service mesh vendors [15, 42, 53]
report 2×-6× variance in latency, while academic studies [99] report
an increase in latency and utilization by 30-185% and 41-92% across
different benchmark applications. This can cost millions in addi-
tional computing resources [76] to support production workloads.
Our study confirms these variances with the instruction and CPU

https://doi.org/10.1145/3721465.3721862
https://doi.org/10.1145/3721465.3721862

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands P. Sahu, S. Wei, N. J. Yadwadkar, M. Tiwari

SidecarSidecar

 System
 under
 Test

K
er

ne
l

O
S

H
ar

dw
ar

e
C

PU

Control
Plane

ApplicationRequest
Generator

Workloads

Filters

Syscalls
Pagemaps
Tail latency
Cache MPKI
Branch MPKI
TLB MPKI

Throughput
CPU/Mem
Usage
Instruction trace
Cycles
Pipeline stalls Pe

rf
or

m
an

ce
A

na
ly

si
s Predict

Performance
Optimize
System

In
pu

ts
Pr

of
ili

ng

Sidecar

Figure 2: Our framework can deploy and profile various con-
figurations, and provides analytics.

usage increasing by up to 76% and 91% respectively for simple TCP
filters. Furthermore, we note that seemingly simple changes, such
as a switch from TCP to HTTP filters for access control, result in a
2.4× decrease in throughput. A methodical understanding of fac-
tors influencing sidecar performance and resource usage is needed
for operators to navigate the deployment choices with a balance
between performance and operational functionalities.
In this paper we present a methodical study of sidecars in modern
cloud frameworks. Our characterization improves upon existing
white-box methodology used in literature [99] by a) incorporat-
ing diverse and complex sidecar filters and b) microarchitectural
profiling of orchestration frameworks (Fig. 2).

Existing studies, primarily conducted by practitioners [42, 53, 62],
focus on performance degradation for applications and lack com-
prehensive analysis for different filter configurations. Therefore,
these studies offer isolated findings with minimal comparisons
between frameworks, forcing operators to conduct their own eval-
uations of custom sidecar configurations. In contrast, by leveraging
a broad and diverse set of filters, our study enables us to model
sidecar performance as a combination of individual filters and other
components, such as packet reads/writes and protocol parsing.

Platform operators also aim to minimize performance overheads
while deploying such rich filters in bulk across production environ-
ments. Since sidecars and filters operate at microsecond scales, it is
imperative to understand their interaction with the processor micro-
architecture to systematically analyze and mitigate performance
overheads. Our micro-architectural profiling of Envoy sidecars [28]
show that different filters spend up to 25% of all cycles waiting for
valid instructions, caused by a poor reuse of the instruction cache
(iCache) – indicated by 45-75 MPKI, and stalls incurred due to very
high instruction translation lookaside buffer (iTLB) misses. Binary
instrumentation reveal a high iCache working set size (WSS) of
200kB-270kB for TCP and HTTP based filters. Further, an irregular
access pattern results in sidecars, touching over 300 4k pages each
request which contributes to a high iTLB miss rate. We explore
solutions of mixed page sizes based on access pattern and show
that using just 4-6 2M-hugepages can help reduce the iTLB miss
rates by 50%-85% in simulation environments.
We make the following key contributions in our paper:
(1) We improve on the profiling methodology for evaluating or-

chestration frameworks by incorporating a diverse and rep-
resentative set of sidecar filters. This provides visibility into

performance critical components of sidecars as well as account
for performance variability across different types of filters.

(2) We provide the first microarchitectural analysis of sidecar per-
formance in modern orchestration frameworks. We show how
such characterizations can reveal critical microarchitectural
bottlenecks and guide domain-specific solutions.

We open-source our framework and toolkit for broader use at
https://github.com/utspark/sidecar-characterization, that can in-
form platform engineers and architects of performance trade-offs
and motivate future optimizations and cloud-native architectures.

2 Background
2.1 Microservices, Functions and Service Meshes
Microservices rely on cloud orchestration frameworks to abstract
server nodes and handle tasks such as scheduling, fault tolerance
and service discovery. Increasing cluster sizes, service volume and
complex capabilities, increases the communication trafficmulti-fold,
making it challenging to debug [58] and update infrastructures.

ReviewProduct
Page Detail

Service Mesh
(Data Plane)

Sidecar Sidecar Sidecar

Sidecar

RatingRequest

Po
d

Figure 3: BookInfo [8] deployed
with a service mesh.

Service meshes solve
this challenge by giving
platform engineers flex-
ibility to augment mi-
croservices with rich fil-
ters that provide opera-
tional visibility, applica-
tion security and man-
agement. A service mesh
easily conforms to any
microservice topology by
injecting data plane sidecars to manage intra-service communica-
tion as depicted in Fig. 3. In contrast to microservice applications
and function workloads, sidecars are persistent infrastructure com-
ponents that have a consistent runtime behavior, unlike application
workloads that exhibit runtime differences and FaaS functions that
are ephemeral processes. Frameworks like Knative [47] include
sidecars in the same pod as a FaaS function, and hence sometimes
scale down to zero. However, during warm states, the runtime be-
havior of infrastructure sidecar processes are separate from user
workload functions and exhibit well-defined patterns. Recent sur-
veys [16, 17] found over 60% of organizations use service meshes,
making it essential to study their performance.

2.2 Sidecars
Sidecars processes are co-located with each microservice instance
within a shared network namespace called pod. This allows the
sidecar to intercept any traffic for the service instance and apply
configured set of filters. These filters are generally aimed towards
network management (packet management [37, 39, 72], load bal-
ancing [22, 23], service discovery [30, 90]), security (mTLS [60],
isolation [82], service-level authorization [7, 29, 65]) or observabil-
ity (tracing [21, 43, 100], logging [4, 89], stats [50]). To enable rich
application layer filters [27], sidecars usually run in the user-space.

eBPF-based [14] sidecars limit functionality due to kernel restric-
tions, while consolidation of sidecars [3] raises security challenges.
Although the use of sidecars as libraries [57, 76] offers performance

https://github.com/utspark/sidecar-characterization

Understanding Sidecars in Cloud Orchestration SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

Service A

TCP/IP

Sidecar

TCP/IP

Service B

TCP/IP

Sidecar

TCP/IP

NICA NICB

Write

Write

Write

Read

Read

Read

TX RX
Transport

Layer

Text
Text

Userspace
Kernel

Net. Device
Syscall

Ingress Path
Egress Path

Net. Request

Si
de

ca
r

O
ve

rh
ea

d
Prot. Parse

HTTP Filter
Router

TCP Filter

Sidecar

Figure 4: Life of a request between two services via sidecars.

benefits without sacrificing functionality, its adoption is low be-
cause it needs recompilation of binaries and services. Hence we
expect process-based sidecars to continue to dominate in the future.
Packet lifetime: Sidecars intercept both ingress and egress traffic
for an application (Fig. 4), resulting in a single request between
two service instances being broken into three network requests.
Outbound packets from service A are written to network buffers
before it is read by its sidecar. The sidecar processes the packet,
invoking any configured TCP and HTTP/gRPC filters on its egress
path. The sidecar completes its action by utilizing an HTTP or TCP
router to write back to the network stack with service B as the
destination. The packet undergoes a similar life-cycle before it is
sent out to the destination over the network.

3 Motivation
Service meshes provide a powerful tool to platform engineers to
independently and dynamically configure services with operational
logic as a set of filters, allowing operators to move from traditional
network management to rich security and telemetry tasks.

However, platform engineers face a significant challenge in de-
ployment of these filters because of the cost of using these filters are
often large and unpredictable. Black-box performance analysis are
often application specific and cannot be generalized. The variance
in overheads is high across different filters making it challenging
for architects and engineers to either predict the performance or
work towards optimizing the penalty.

3.1 ‘Side’cars are often the dominant modules
We study user-visible metrics like tail latency and throughput to
identify the service level degradation experienced due to the use
of sidecar processes. We evaluate this using an off-the-shelf ser-
vice mesh (Istio [40]) with a default predefined sidecar configura-
tion [41]. We use three commonly used [33, 99] benchmark appli-
cations – DeathstarBench’s Hotel Reservation [35], BookInfo [8]
and Online Boutique [66]. We also quantify these overheads as
we scale the cluster to larger sizes. Figure 5 quantifies the p90 tail
latency of applications and associated networking activities with
and without a sidecar configured orchestration. “Base app" includes
the application processing time and all network related latency in
the system. “Sidecars" only quantifies the sum of latencies incurred
when a request is being processed in a sidecar associated with any
of the microservices. We notice that applications experience 5-25ms
of tail latency increase across benchmark applications, indicating
that sidecar proxies can sometimes dominate the overall application
workload. Although larger clusters see an increase in overall appli-
cation latency due to networking overheads, the penalty incurred

1-
no

de
2-

no
de

5-
no

de
1-

no
de

2-
no

de
5-

no
de

1-
no

de
2-

no
de

5-
no

de

0

20

40

60

P9
0

La
te

nc
y

in
 m

s

5.
32 5.
58 6.

66
8.

46 6.
0

8.
13

22
.1

3 26
.8

8
20

.5
7

HotelResv BookInfo O.Boutiq
base app
sidecars

1-
no

de
2-

no
de

5-
no

de
1-

no
de

2-
no

de
5-

no
de

1-
no

de
2-

no
de

5-
no

de

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
ize

d)

0.
33

0.
34

0.
44

0.
2

0.
19

0.
23 0.

09 0.
1

0.
1

HotelResv BookInfo O.Boutiq

sidecars
base app

Figure 5: Performance measurements across applications
with different cluster size show no significant change in the
performance penalty of using sidecars in larger cluster sizes.
Throughput degradation of using sidecars is shown normal-
ized to maximum QPS without service mesh.

due to sidecars in each application remains unchanged as we go to
larger clusters. The variance in overheads are due to differences in
application topologies and sidecar configurations that we explore
in detail in Section 5. Increasing compute demands results in higher
utilization and a throughput degradation of up to 45%. Since using
sidecars decreases throughputs, we show a normalized view of the
throughput in Fig. 5, where the “sidecars" block is lower than “base
app". This demand compounds as we move towards applications
with 1000s of microservices [76] and is fueled by two trends of the
industry. First, agile development encourages smaller application
components [55] and “offload" any operational task to the orches-
trator and the sidecar components. This leads to communication
traffic increase that results in higher time spent in sidecars rather
than application processing. Second, flexibility of dynamic config-
uration comes with the complexity of design in sidecar processes
which require more CPU cycles and resources. With notable pro-
cessing times for sidecars, it is imperative for service providers and
architects to understand the micro-architectural impacts to design
efficient systems.

3.2 Sidecar’s performance variance
Our analysis reveals two key factors affecting these variances:
Sidecar Configuration A sidecar can be customized with one or
more sets of filters during application deployment. Depending on
the filter’s compute requirements and complexity, it can affect the
overall performance quite differently. Figure 6 shows the overall
latency and throughput experienced by a simple echo server when
we configure the sidecar with a set of commonly used TCP (TCP,
RBAC, TLS) and HTTP (HTTP, Log and Mix) filters. We discuss de-
tails about these filters in Section 4. Our results indicate that across
a similar protocol (TCP or HTTP), latency shows little variance.
However, based on complexity, throughput degrades by about 2.4×
as we switch from TCP to HTTP protocols.
Processor micro-architecture Figure 6, evaluates latency and
throughput of a simple echo-server applications configured with
different sidecar filters across two machines with host processors
that are 5 generations apart. Across both generations, we see that

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands P. Sahu, S. Wei, N. J. Yadwadkar, M. Tiwari

0 10000 20000
0

5

10

P9
9

La
te

nc
y

(m
s) Haswell

0 20000 40000 60000
0

5

10 Icelake
TCP RBAC TLS HTTP Log HTTP Mix

Throughput

Figure 6: Tail latency vs throughput for various configura-
tions across processor generations. Throughput decreases by
2.4× when operators switch to HTTP-based from TCP-based
policies for service access control.

throughput change significantly as we configure sidecars with dif-
ferent policies. Although, the trend across the policies are same,
newer processors experience a 3× boost in maximum query ca-
pacity as seen in Fig. 6. We also observe a distinct improvement
of around 20% on tail latency across policies too. This motivates
our interest in evaluating and understanding micro-architectural
implications on sidecars.

4 Experimental Setup
Our methodology includes diverse sidecar filters, applications and
deployment settings like platform hardware, cluster size and mes-
sage sizes to quantify sidecar performance.
Applicationmicro-benchmarks:We study sidecar’s performance
using two single-service microbenchmarks.
(1) Socketify EchoServer [85]: Fast Python based echo-server – aug-

mented to modify response size based on the request parameter.
(2) MySQL [61]: A relational database configured with synthetic

tables for use with SQL query filters.
Filter Microbenchmarks:We use Envoy [28] as our sidecar, given
its widespread adoption in service meshes [14, 40, 49] and extensive
library of 80+ filters. For our evaluation, we select 9 representa-
tive filters – 2 TCP filters and 7 application-layer filters, including
rate-limiting, TLS, logging, and MySQL. These cover a range of
compute and I/O intensive tasks. While these filters suffice for our
characterization, the testbed can easily extend to other filters.
(1) TCP: Simple L3/L4 Router.
(2) RBAC: TCP-IP/Port based access control policies to rejects pack-

ets from all or range of IP/Ports. Variants used: “Accept All",
“Reject 1", “Reject 100" and “Reject 1000".

(3) SQL: MySQL filter that parses queries and emits metadata.
(4) HTTP: Simple L7 API Router.

Node Intel Xeon E5-2683v3 Intel Xeon Silver 4314
Cores 28-core dual socket 16-core (SMT Off)
I-Cache 32KB L1 32KB L1
D-Cache 32KB L1;256KB L2 48KB L1;1.25MB L2
iTLB 128-entry 4-way Shared 128-entry 8-way Shared
LLC 70 MB (56 cores) 24 MB (16 cores)
Freq. 2GHz (no cstates) 2.4GHz (no cstates)

Memory 256G 2133MHz DDR4 128G 3200MHz DDR4
Kernel Linux 5.4 (ubuntu20) Linux 5.15 (ubuntu20)

Table 1: Node Specifications.

(5) Header Read: Reads packets headers and sets sidecar metadata
appropriately. It does not modify the packet.

(6) Ratelimit: Limits the request rate to a service. Filter terminates
excess requests with error responses.

(7) IP Tag: Modifies packet and inserts new headers with value
based on client’s IP. Variants used: “IP Tag1",“IP Tag 5",“IP Tag
10" based on number of inserted headers.

(8) Logging: Configurable logs of service invocations.
(9) TLS: Operator configuration commonly used to provide en(de-

)cryption of the payload at pod boundaries.
(10) HTTP Mix 1: Combined Ratelimit and IP Tag.
(11) HTTP Mix 2: All policies combined except TLS.
Hardware and software details: All of our experiments and re-
sults are conducted on Cloudlab [26] using Intel Xeon Silver 4314
(IceLake) nodes. Details about node configuration can be found
in Table 1. For brevity we limit our analysis to IceLake machines
here and provide extended evaluations on dual socket Intel Xeon
E5-2683 v3 (Haswell) in Appendix B. For container orchestration
we use Istio (v1.20.3) [40] on Kubernetes (v1.28), and wrk2 [93]
as our load generator operating on the worker node to mitigate
datacenter network latency. All benchmark applications run at max-
imum throughput while the microbenchmark experiments run at
varying the query rates to achieve low (20%), medium (50%) and
high (100%) CPU utilization. Our study utilizes a 100-byte pay-
load for most of the experiments as shown to be a representative
message size in prior studies [99]. However, we also study the im-
pact of larger message sizes in Appendix B. All microbenchmark
studies have sidecar processes pinned to 1 CPU core with no SMT
enabled to reduce interference from workloads and benefit from
a warm micro-architecture. We use perf (performance counters),
strace and pmu-tools [71] to collect profiling information and
Intel PIN [54](v3.30-98830-1d7b601b3) to collect execution traces.

5 Characterization and Evaluation
Here we discuss the evaluation results of sidecar processes by ad-
dressing two noted limitations of existing studies – 1. Lack of diverse
sidecar policies by incorporating representative filters in our mi-
crobenchmark for comprehensive study, and 2. Micro-architecture
visibility gaps by evaluating extensive low-level metrics across plat-
forms, revealing patterns for design exploration and optimization.

5.1 Application Topology
Service meshes incorporate sidecar processes for each service in-
stance, making a user request traverse multiple sidecars as the
request gets processed by the microservice application. Each user
request pays the performance overhead of each sidecar process
in its call path, that aggregates to significant overhead for large
applications. Prior work [97] have shown such call paths to be
typically 8-10 microservice long. Since the microservice graph and
communication patterns do not influence sidecar behavior as we
scale-up applications, we do not see a significant change in sidecar
overheads as we scale out to large cluster sizes. We also note that
sidecar processes being decoupled from underlying microservice,
exhibiting performance behavior that is influenced by configured
policies rather than the service they are associated with. We detail
these experiments and results in Appendix A.

Understanding Sidecars in Cloud Orchestration SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

TC
P

Ro
ut

er

Ac
ce

pt
 A

ll

Re
je

ct
 1

Re
je

ct
 1

00

Re
je

ct
 1

00
0

SQ
L

TL
S

HT
TP

 R
ou

te
r

He
ad

er
 R

ea
d

Ra
te

-L
im

it

IP
 Ta

g(
1)

IP
 Ta

g(
5)

IP
 Ta

g(
10

)

Lo
gg

in
g

HT
TP

 M
ix

 1

HT
TP

 M
ix

 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
st

ru
ct

io
ns

 P
er

 R
eq

ue
st

×105 Sc Read
OS Read
Sc Write
OS Write

Pkt Proc
Prot Parse
Hdr EnDec

Poll
Filter
Other

Inst
Cycle
IPC

0

1

2

3

4

5

6

Cy
cle

s P
er

 R
eq

ue
st0.780.760.72

0.67

0.94

0.44
0.38

0.570.57
0.630.610.590.620.590.570.59

×105

Figure 7: Performance overhead across different sidecar con-
figurations per request. Filters contribute from 1%-10% cycles
overhead, while protocol parsing and OS write are the largest
contributors of overhead.

5.2 Configuration Microbenchmarking
As we saw in Section 2, a network packet traverses through var-
ious sidecar components before it is processed by the operator-
configured filters. We categorize this lifecycle into functional com-
ponents described in Table 2.We use diversemicrobenchmark filters
described in Section 4 to understand their performance impact.

Fig. 7 shows instruction and cycle distribution across bench-
marks. HTTP policies spend 50% of CPU cycles on protocol parsing,
with write syscalls as the next largest contributor. For TCP policies,
write syscalls dominate. Most components, except filters, show uni-
form latency across microbenchmarks. Filters, though small (<5%
instruction overhead), can use up to 15% of CPU cycles.

Although cycles and instructions overhead go hand-in-hand, we
see that the instruction-per-cycle (IPC) metric reveals efficiency
differences in the TCP and HTTP filters. IPC estimates the instruc-
tion throughput of a processor and is indicative of architectural
execution efficiency. Modern processors are designed for higher
IPC (1.5-2 [69]) for benchmark applications by leveraging locality
and program patterns but our results show TCP policies exhibiting
an IPC of 0.7-0.9, while HTTP-based policies are lower than 0.6.

These results bring out two interesting facets of how filters
and configuration can affect overall performance. First, we see a
gradual decrease in IPC across the TCP and HTTP policies as we
increase complexity of the filters (e.g. larger allow/deny lists and
filter-mixes). But as we increase the filters significantly in “Reject

Component Description

OS Read Kernel network stack read on packet receive.
Sidecar Read Userspace packet read by sidecar.
Packet Processing TCP/IP packet processing in sidecar.
HTTP Protocol Parse HTTP protocol parsing in sidecar for L7 filters.
Header En/Decoder En(De-)coder logic for any header-specific filter.
Sidecar Filter User defined filter logic applied to messages.
Event Poll I/O notif processing & polling event handler.
Sidecar Write Reassembly of packet & invoke write syscall.
OS Write Update destination & write to network buffer.

Table 2: Functional components of a sidecar proxy.

Filter cycles Total cycles
Policy Actual Estimate Actual Estimate
HTTP - - 350.5k -

Header Proc. 9.67k - 364.6k 360.2k(+1.22%)
Rate Limit 4.16k - 331.7k 354.7k(-8.2%)
IP Tag (1) 8.52k - 338.7k 359.1k(-8.7%)
Logging 20.45k - 358.9k 370.9k(-9.6%)

HTTP Mix 1 12.9k 12.68k(1.72%) 373.9k 363.4k(-0.66%)
HTTP Mix 2 41.83k 42.8k(-2.33%) 439.1k 392.3k(1.23%)
Table 3: Actual and estimated cycles for HTTP filters.

1000", the IPC increases because of highly reused logic that benefits
from both cache reuse and branch predictors. Other components see
the program behavior switch quicker than the hardware is able to
warm up and predict. Second, Table 3 shows that the performance
overhead of filters is additive in nature. Composing the cycle laten-
cies of individual filter components gives a close upper-bound on
the cycle latency for aggregated filter configuration.

5.3 Micro-architectural Investigation
Hardware events can yield fine-grained visibility into IPC bottle-
necks.
Topdown Analysis: A top-down approach quantifies the time
spent across various stages in a processor, namely 1. Frontend:
which fetches and decodes instructions; 2. Backend: which pro-
cesses and computes the instruction data; 3. Retiring: which finally
commits processed instructions and 4. Speculation: which repre-
sents pipeline cycles lost due to a bad branch prediction. Fig. 8
plots the cycle breakdown across the four stages of a processor
pipeline which reveals more than half of cycles are spent in the
frontend irrespective of the filter and load. This indicates lack of
valid instructions, resulting in stalls for useful instructions.
Frontend Behavior:We investigate frontend stalls by analyzing
instruction cache misses and branch behavior, including branch
misses and branch types. Misses per kilo-instructions (MPKI) met-
rics indicate efficiency of micro-architectural components with
high-performance systems aiming for lowmiss rates. Priorwork [35]
report about 10-12 MPKI for iCaches in microservices workloads.

Our experimental results in Fig. 9 reveal that sidecar processes
exhibit a significantly higher iCache miss rate of up to 75 MPKI on
Icelake machines. Fig. 10 indicates these machines face up to 13%
cycles stalled in the processor frontend waiting for valid instruc-
tions, likely due to iCache misses. Our analysis also show that of
all fetched instructions that encounter an iCache miss, only 25%
actually execute and retire. This is indicative of a large number
of outstanding misses prefetch from a wrong target and end up
thrashing the iCache, resulting in higher miss rate.

Branches Total Miss
All Retired 56.5k 4.5k
Cond. Taken 12.14k 1.3k

Cond. Not Taken 20.64k 1k
Indirect 3.6k 2k

Near Taken 35.4k 3.6k
Table 4: Breakdown of branch ac-
cesses and misses per request.

Interestingly, we
observe low branch
miss rates across
platform generations,
with under 5 MPKI
on Icelakemachines,
as shown in Fig. 9.
In the interest of
space, we list the

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands P. Sahu, S. Wei, N. J. Yadwadkar, M. Tiwari

TCP Rej. 100 TLS HTTP Log HTTP Mix
0

20

40

60

80

100

Cy
cle

s(
%

) -
Ice

la
ke

low(20%)
medium(50%)
high(100%)

Front End
Bad Speculate

Back End
Retiring

Figure 8: Cycle breakdowns reveal the
processor frontend as the primary
bottleneck, followed by the backend
for data-intensive filters.

TC
P

Ro
ut

er
Ac

ce
pt

 A
ll

Re
je

ct
 1

Re
je

ct
 1

00
Re

je
ct

 1
00

0
SQ

L
TL

S
HT

TP
 R

ou
te

r
He

ad
er

 R
ea

d
Ra

te
-L

im
it

IP
 Ta

g(
1)

IP
 Ta

g(
5)

IP
 Ta

g(
10

)
Lo

gg
in

g
HT

TP
 M

ix
 2

0

25

50

75

Ca
ch

e
M

PK
I IceLake

0

5

10

Br
an

ch
 M

PK
IL1-I L1-I Ret Branch

Figure 9: iCaches have high MPKI while
retired iCache misses are only 25% of all
misses. Branch predictors have low MPKI.

TC
P

Ro
ut

er
Ac

ce
pt

 A
ll

Re
je

ct
 1

Re
je

ct
 1

00
Re

je
ct

 1
00

0
SQ

L
TL

S
HT

TP
 R

ou
te

r
He

ad
er

 R
ea

d
Ra

te
-L

im
it

IP
 Ta

g(
1)

IP
 Ta

g(
5)

IP
 Ta

g(
10

)
Lo

gg
in

g
HT

TP
 M

ix
 2

0

1

2

Cy
cle

 P
en

al
ty

8.
95

%
9.

19
%

8.
59

%
6.

05
%

3.
27

%
13

.8
%

8.
94

%
12

.2
%

12
.5

9%
12

.5
8%

12
.1

4%
12

.1
9%

11
.8

6%
12

.1
8%

11
.9

9%

×105 IceLakeI$ Fetch Stall
Total Cycles

Figure 10: I-Cache misses cause
frontend stalls that take 9-12%
of all cycles in Icelake processors.

types of branch instructions for one policy (RateLimit) in Table 4.
Branches account for less than 20% of instructions, mostly condi-
tional. Indirect branches, under 5% of all branches, cause over 50% of
branch misses. Poor predictability and deep pipeline resolution lead
to costly flushes, validating that mispredicting indirect branches has
high performance cost due to wasted cycles and iCache pollution.

In summary, we identify two key contributors to frontend bot-
tlenecks. First, indirect branches dominate branch misses, severely
impacting performance by wasting pipeline slots, triggering deep
wrong-path executions, and polluting the iCache, leading to higher
cache misses and stalls. While newer processors with larger L2
caches (1.25MB) mitigate some fetch miss costs, aggressive prefetch-
ers still result in elevated L1 miss rates. Second, simple branch pre-
dictors perform well due to the prevalence of conditional branches.
Enhancements targeting indirect branch prediction could yield sig-
nificant improvements in frontend efficiency.

5.4 Dynamic code analysis
Our characterization highlights two avenues to improve perfor-
mance for sidecar developers and architects aiming to provide effi-
cient cloud-native hardware – reducing instruction fetch latency
and improving branch misprediction costs.
Instruction fetch:Microservice applications typically use a con-
tainerized sidecar for each service instance. While each request
processing requires some heap space for thread local storage, most
of the code are read-only pages shared as copy-on-write. Envoy
sidecars [28] reports two large shared code regions spanning 21MB
and 40MB along with two private writable areas that are 2288kB
and 248kB. However, each request typically touches a very small
portion of the entire memory, called the working set size (WSS).

Existing tools for calculating working set sizes estimate by count-
ing the referenced flags in the page map kept by Linux systems.
However, for highly segmented applications like the sidecars, it
does not provide accurate estimates. Our evaluation instruments
the proxy during the run time using Intel PIN [54] to get an instruc-
tion trace. This trace is then used to calculate the actual number of
cache lines used by the sidecar process. Since PIN only instruments
retired instructions we get a lower bound estimate of the WSS.

Although prior work [6] show an estimate of 4MB of WSS for
cloud functions, our analysis puts a sidecar’s WSS at 275-300kB
across various microbenchmark policies – small enough for LLCs

and large L2s but too large for L1! We also note that these cache
lines map to about 350 4kB pages in the envoy binaries and shared li-
braries.Wemap the access pattern of the hot code regions in Fig. 11a.
We also note huge-page boundaries for these instruction traces.

350 page accesses impart significant pressure on small L1-I iTLBs
(64-entry 8-way 4k TLB, 8-entry fully associative hugepage iTLBs
per thread [38]). Performance counters show about 1.5k iTLBmisses
per request of which about 1.2k misses do a page walk which can be
an expensive process and introduce frontend stalls. We use a simple
TLB simulator with an LRU (least recently used) replacement policy
to simulate the iTLB behavior using extracted instruction traces.
We note a similar rate of ≃ 1.1k miss per request. Simulation results
show that over 95% of the iTLB accesses occur in under 20 pages.
However, 19 of these pages get swapped out as often as 6-60𝑥 in
each request shown in Fig. 11b. Fig. 11c modifies the simulator to
estimate iTLB misses while using hugepages. We see that misses
decrease up to 80% when we use all huge pages (2M) but such a
model would have very high memory usage. Using a combination
of 4k and 2M huge pages on demand, reduce iTLB misses by up to
80% and 90% with 5 and 6 huge-page entries respectively. These
have a moderate memory overhead of 8.5MB-11MB.

We also profile the WSS of Envoy functions to understand the
cache requirements of high latency sections like the protocol pars-
ing. Protocol parsing uses ≃ 40-50kB of instruction memory indicat-
ing a constant thrash of caches that provides no discernible iCache
reuse. While these are larger than current iCaches, future genera-
tions are slated to support 64k of iCaches. Core isolation with cache
partitioning for critical sections can provide performance boosts.

6 Related Work
Microservices and Functions Rise of distributed application de-
signs [45] have been driven by advances in containerization [18, 24,
56] and orchestration frameworks [25, 48] which provide users
with a serverless experience by abstracting the hardware layer.
Microservices differ from traditional cloud services, posing chal-
lenges in tail latency [32, 63, 73], performance [34, 86, 94], relia-
bility [68], and security [2, 9, 10, 31]. Functions, popularized by
AWS Lambda, excel in short, parallel tasks but struggle with startup
latency. Significant prior research aims at understanding FaaS plat-
forms [78, 81, 87, 88, 92, 98], performance [19, 77, 79], and isola-
tion [1, 44, 83, 91]. However, learning frommicroservices workloads

Understanding Sidecars in Cloud Orchestration SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

0 100 200 300
4k Pages (indexed in increasing order)

0

10

20

Re
fe

re
nc

e
co

un
ts

2M page bounds

×104

(a) Proxy’s Page Accesses Patterns

0 100 200 300
Page indices (decreasing references)

0

20

40

60

Re
fe

re
nc

e
co

un
ts ×104

0.0

0.5

1.0

1.5

TL
B

ev
ict

io
ns

×1022M Evict
4k Evict
2M Ref
4k Ref

(b) iTLB evictions per page

0 1 2 3 4 5 6 7 8 9 101112131415
Number of used hugepages (2M)

0

10

20

30

Re
sid

en
t M

em
or

y
(M

B)

0

2

4

TL
B

M
PK

I

Resident Memory
TLB Miss

(c) iTLB misses while using using huge pages

Figure 11: Instruction and iTLB access patterns across a sidecar invocation.

do not apply to sidecars. Microservices [35] and functions [79] have
low frontend bottlenecks on warm executions, and checkpointing
benefits such workloads but fails to address sidecars, which exhibit
high frontend stalls even in back-to-back executions.
Understanding cloud platforms Characterization studies of or-
chestration platforms [75, 80, 99] reveal significant communication
layer overheads, prompting novel communication schemes [19, 84]
and network optimizations [80]. While we observe similar issues,
our focus is on hardware offload designs for infrastructure compo-
nents. Warehouse-scale studies [36, 46] highlight overheads from
system tasks like compression, allocation, and growing instruction
footprints, aligning with our observations on sidecar behaviors.
However, sidecars, being highly replicated, require targeted pro-
gram analysis and hardware optimizations for significant gains. Ex-
isting performance models [99] rely on tail-latency metrics, which
vary across architectures. We propose microarchitectural metrics
as a more accurate basis for predictive models and are working to
integrate these into existing frameworks.
Offloading sidecarsWith efforts from academia [5, 51, 59, 70, 95]
and industry [11, 64] to offload infrastructure tasks, there is an
opportunity to bring insights from our micro-architectural eval-
uations for accelerating sidecar functionality to enable large and
rich logic filters. Recent works [67] have also looked into offloading
software network switches for high-performance data planes.

7 Conclusion
This paper brings attention to performance penalties associated
with the use of service meshes and sidecars. We provide an in-depth
characterization that quantifies sidecar overheads to build a perfor-
mance model for predictable overheads when composing sidecar
configurations. We also explore hardware bottlenecks in support-
ing such frameworks highlighting severe frontend bottlenecks and
evaluating solutions that can reduce iTLB miss rates up to 85%.

Acknowledgments
We thank the reviewers for their insightful comments, Anjo Vahldiek-
Oberwagner and Mattan Erez for their feedback, and members of
SPARK Lab for the regular discussions and inputs. This work was
supported in part by ACE, one of the seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program sponsored by
DARPA.

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight vir-
tualization for serverless applications. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[2] Angeliki Aktypi, Dimitris Karnikis, Nikos Vasilakis, and Kasper Rasmussen.
Themis: A secure decentralized framework formicroservice interaction in server-
less computing. In Proceedings of the 17th International Conference on Availability,
Reliability and Security, pages 1–11, 2022.

[3] Ambient mesh - simplify operations of the istio service mesh. https://www.solo.
io/products/ambient-mesh/.

[4] Application logging — envoy 1.32.0-dev-bfa0e0 documentation.
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/
application_logging.

[5] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
DavidWalker, and DavidWentzlaff. Enabling programmable transport protocols
in {High-Speed}{NICs}. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 93–109, 2020.

[6] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, TippMoseley,
and Parthasarathy Ranganathan. Asmdb: understanding and mitigating front-
end stalls in warehouse-scale computers. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 462–473, 2019.

[7] Basic auth — envoy 1.32.0-dev-bfa0e0 documentation. https://www.envoyproxy.
io/docs/envoy/latest/configuration/http/http_filters/basic_auth_filter.

[8] Istio / bookinfo application. https://istio.io/latest/docs/examples/bookinfo/.
[9] Ferdinand Brasser, Patrick Jauernig, Frederik Pustelnik, Ahmad-Reza Sadeghi,

and Emmanuel Stapf. Trusted container extensions for container-based confi-
dential computing. arXiv preprint arXiv:2205.05747, 2022.

[10] Stefan Brenner, Tobias Hundt, Giovanni Mazzeo, and Rüdiger Kapitza. Secure
cloud micro services using intel sgx. InDistributed Applications and Interoperable
Systems: 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as Part of the
12th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2017, Neuchâtel, Switzerland, June 19–22, 2017, Proceedings 17, pages
177–191. Springer, 2017.

[11] Brad Burres, Dan Daly, Mark Debbage, Eliel Louzoun, Christine Severns-
Williams, Naru Sundar, Nadav Turbovich, Barry Wolford, and Yadong Li. Intel’s
hyperscale-ready infrastructure processing unit (ipu). In 2021 IEEE Hot Chips 33
Symposium (HCS), pages 1–16. IEEE, 2021.

[12] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. Seuss: skip redundant paths to make serverless fast. In
Proceedings of the Fifteenth European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Computing Machinery.

[13] Shuang Chen, Christina Delimitrou, and José F. Martínez. Parties: Qos-aware
resource partitioning for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 107–120, New York, NY,
USA, 2019. Association for Computing Machinery.

[14] Cilium - linux native, api-aware networking and security for containers. https:
//cilium.io/.

[15] Cni benchmark: Understanding cilium network performance. https://cilium.io/
blog/2021/05/11/cni-benchmark/.

[16] CNCF. Cncf_service_mesh_microsurvey_final.pdf. https://www.cncf.io/wp-
content/uploads/2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf.

[17] CNCF. Cncf_survey_report_2020.pdf. https://www.cncf.io/wp-content/uploads/
2020/11/CNCF_Survey_Report_2020.pdf.

[18] containerd – an industry-standard container runtime with an emphasis on
simplicity, robustness and portability. https://containerd.io/.

[19] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten Hoefler.
rfaas: Rdma-enabled faas platform for serverless high-performance computing.
arXiv preprint arXiv:2106.13859, 2021.

https://www.solo.io/products/ambient-mesh/
https://www.solo.io/products/ambient-mesh/
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/application_logging
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/application_logging
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/basic_auth_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/basic_auth_filter
https://istio.io/latest/docs/examples/bookinfo/
https://cilium.io/
https://cilium.io/
https://cilium.io/blog/2021/05/11/cni-benchmark/
https://cilium.io/blog/2021/05/11/cni-benchmark/
https://www.cncf.io/wp-content/uploads/2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf
https://www.cncf.io/wp-content/uploads/2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://containerd.io/

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands P. Sahu, S. Wei, N. J. Yadwadkar, M. Tiwari

[20] Cross-origin resource sharing (cors) - http | mdn. https://developer.mozilla.org/
en-US/docs/Web/HTTP/CORS.

[21] Getting started with apm tracing. https://docs.datadoghq.com/getting_started/
tracing/.

[22] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), March 2013.

[23] Christina Delimitrou and Christos Kozyrakis. HCloud: Resource-Efficient Provi-
sioning in Shared Cloud Systems. In Proceedings of the Twenty First International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2016.

[24] Docker: Accelerated container application development. https://www.docker.
com/.

[25] Swarm mode overview | docker docs. https://docs.docker.com/engine/swarm/.
[26] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.
The design and operation of {CloudLab}. In 2019 USENIX annual technical
conference (USENIX ATC 19), pages 1–14, 2019.

[27] Http filters — envoy 1.27.0-dev-f2a6dc documentation. https://www.envoyproxy.
io/docs/envoy/latest/configuration/http/http_filters/http_filters.

[28] Envoy proxy - home. https://www.envoyproxy.io/.
[29] Role based access control (rbac) filter — envoy 1.27.0-dev-70be00 documenta-

tion. https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_
filters/rbac_filter.

[30] xds rest and grpc protocol — envoy 1.32.0-dev-bfa0e0 documentation. https:
//www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol.

[31] Eduardo Falcão, Matteus Silva, Ariel Luz, and Andrey Brito. Supporting con-
fidential workloads in spire. In 2022 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 186–193. IEEE, 2022.

[32] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan:
Mitigating interference at microsecond timescales. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages 281–297, 2020.

[33] Yu Gan and Christina Delimitrou. The Architectural Implications of Cloud
Microservices. In Computer Architecture Letters (CAL), vol.17, iss. 2, Jul-Dec
2018.

[34] Yu Gan, Sundar Dev, David Lo, and Christina Delimitrou. Sage: Leveraging ML
To Diagnose Unpredictable Performance in Cloud Microservices. InWorkshop
on ML for Computer Architecture and Systems (MLArchSys), June 2020.

[35] YuGan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-software implications
for cloud & edge systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 3–18, 2019.

[36] Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu,
Sagar Karandikar, Jichuan Chang, Krste Asanovic, and Parthasarathy Ran-
ganathan. Profiling hyperscale big data processing. In Proceedings of the 50th
Annual International Symposium on Computer Architecture, pages 1–16, 2023.

[37] Header mutation — envoy 1.32.0-dev-bfa0e0 documentation. https:
//www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/
header_mutation_filter.

[38] Intel icelake. https://www.7-cpu.com/cpu/Ice_Lake.html.
[39] Ip tagging — envoy 1.27.0-dev-70be00 documentation. https://www.envoyproxy.

io/docs/envoy/latest/configuration/http/http_filters/ip_tagging_filter.
[40] Istio. https://istio.io/latest/.
[41] Istio / installation configuration profiles. https://istio.io/latest/docs/setup/

additional-setup/config-profiles/.
[42] Istioldie 1.11 / performance and scalability. https://istio.io/v1.11/docs/ops/

deployment/performance-and-scalability/.
[43] Jaeger: open source, distributed tracing platform. https://www.jaegertracing.io/.
[44] Shannon Joyner, Michael MacCoss, Christina Delimitrou, and Hakim Weather-

spoon. Ripple: A Practical Declarative Programming Framework for Serverless
Compute. In arXiv:2001.00222 [cs.DC], January 2020.

[45] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd Pfleiger,
Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, Mansoor
Mohsin, Ray Kong, Anmol Ahuja, Oana Platon, Alex Wun, Matthew Snider,
Chacko Daniel, Dan Mastrian, Yang Li, Aprameya Rao, Vaishnav Kidambi,
Randy Wang, Abhishek Ram, Sumukh Shivaprakash, Rajeet Nair, Alan War-
wick, Bharat S. Narasimman, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre,
Preetha Subbarayalu, Mert Coskun, and Indranil Gupta. Service fabric: a dis-
tributed platform for building microservices in the cloud. In Proceedings of the
Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

[46] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
TippMoseley, Gu-YeonWei, and David Brooks. Profiling a warehouse-scale com-
puter. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture, ISCA ’15, page 158–169, New York, NY, USA, 2015. Association for

Computing Machinery.
[47] Home - knative.
[48] Kubernetes. https://kubernetes.io/.
[49] Kuma. https://kuma.io/.
[50] Joshua Levin and Theophilus A Benson. Viperprobe: Rethinking microservice

observability with ebpf. In 2020 IEEE 9th International Conference on Cloud
Networking (CloudNet), pages 1–8. IEEE, 2020.

[51] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly flexible
and high performance network processing with reconfigurable hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages 1–14, 2016.

[52] The world’s most advanced service mesh. | linkerd. https://linkerd.io/.
[53] Benchmarking linkerd and istio: 2021 redux | linkerd. https://linkerd.io/2021/

11/29/linkerd-vs-istio-benchmarks-2021/.
[54] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. SIGPLAN
Not., 40(6):190–200, jun 2005.

[55] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. Characterizing microservice dependency
and performance: Alibaba trace analysis. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’21, page 412–426, New York, NY, USA, 2021.
Association for Computing Machinery.

[56] lxc/lxc: Lxc - linux containers. https://github.com/lxc/lxc.
[57] Marblerun: the service mesh for confidential computing. https://www.edgeless.

systems/products/marblerun.
[58] Challenges in microservices: Testing, monitoring, and debugging.

https://asyx.com/2024/02/09/challenges-in-microservices-testing-monitoring-
and-debugging/#:~:text=Debugging%20microservices%20can%20pose%20a,
the%20asynchronous%20communication%20between%20microservices.

[59] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo
Park. {AccelTCP}: Accelerating network applications with stateful {TCP}
offloading. In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 77–92, 2020.

[60] Rfc 8705 - oauth 2.0 mutual-tls client authentication and certificate-bound access
tokens. https://datatracker.ietf.org/doc/html/rfc8705.

[61] Mysql. https://www.mysql.com/.
[62] Netflix. Netflix architecture: How much does netflix’s aws cost? https://www.

cloudzero.com/blog/netflix-aws.
[63] Minh Nguyen, Zhongwei Li, Feng Duan, Hao Che, and Hong Jiang. The tail

at scale: how to predict it? In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), 2016.

[64] What is a dpu? | nvidia blog. https://blogs.nvidia.com/blog/whats-a-dpu-data-
processing-unit/.

[65] Oauth2 — envoy 1.32.0-dev-bfa0e0 documentation. https://www.envoyproxy.
io/docs/envoy/latest/configuration/http/http_filters/oauth2_filter.

[66] Googlecloudplatform/microservices-demo: Sample cloud-first application with
10 microservices showcasing kubernetes, istio, and grpc. https://github.com/
GoogleCloudPlatform/microservices-demo.

[67] Heng Pan, Peng He, Zhenyu Li, Pan Zhang, JunjieWan, Yuhao Zhou, XiongChun
Duan, Yu Zhang, and Gaogang Xie. Hoda: a high-performance open vswitch
dataplane with multiple specialized data paths. In Proceedings of the Nineteenth
European Conference on Computer Systems, EuroSys ’24, page 82–98, New York,
NY, USA, 2024. Association for Computing Machinery.

[68] Aurojit Panda, Mooly Sagiv, and Scott Shenker. Verification in the age of
microservices. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, pages 30–36, 2017.

[69] Reena Panda, Shuang Song, Joseph Dean, and Lizy K. John. Wait of a decade:
Did spec cpu 2017 broaden the performance horizon? In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 271–282,
2018.

[70] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Pe-
ter, Rastislav Bodik, and Thomas Anderson. Floem: A programming system
for {NIC-Accelerated} network applications. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 663–679, 2018.

[71] andikleen/pmu-tools: Intel pmu profiling tools. https://github.com/andikleen/
pmu-tools.

[72] Proto message extraction — envoy 1.32.0-dev-bfa0e0 documentation.
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/
proto_message_extraction_filter.

[73] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Rav-
ishankar K Iyer. {FIRM}: An intelligent fine-grained resource management
framework for {SLO-Oriented} microservices. In 14th USENIX symposium on
operating systems design and implementation (OSDI 20), pages 805–825, 2020.

[74] Francisco Romero and Christina Delimitrou. Mage: Online and Interference-
Aware Scheduling for Multi-Scale Heterogeneous Systems. In Proceedings of
the 27th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT18), November 2018.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.datadoghq.com/getting_started/tracing/
https://docs.datadoghq.com/getting_started/tracing/
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/rbac_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/rbac_filter
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/header_mutation_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/header_mutation_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/header_mutation_filter
https://www.7-cpu.com/cpu/Ice_Lake.html
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/ip_tagging_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/ip_tagging_filter
https://istio.io/latest/
https://istio.io/latest/docs/setup/additional-setup/config-profiles/
https://istio.io/latest/docs/setup/additional-setup/config-profiles/
https://istio.io/v1.11/docs/ops/deployment/performance-and-scalability/
https://istio.io/v1.11/docs/ops/deployment/performance-and-scalability/
https://www.jaegertracing.io/
https://kubernetes.io/
https://kuma.io/
https://linkerd.io/
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://github.com/lxc/lxc
https://www.edgeless.systems/products/marblerun
https://www.edgeless.systems/products/marblerun
https://asyx.com/2024/02/09/challenges-in-microservices-testing-monitoring-and-debugging/#:~:text=Debugging%20microservices%20can%20pose%20a,the%20asynchronous%20communication%20between%20microservices.
https://asyx.com/2024/02/09/challenges-in-microservices-testing-monitoring-and-debugging/#:~:text=Debugging%20microservices%20can%20pose%20a,the%20asynchronous%20communication%20between%20microservices.
https://asyx.com/2024/02/09/challenges-in-microservices-testing-monitoring-and-debugging/#:~:text=Debugging%20microservices%20can%20pose%20a,the%20asynchronous%20communication%20between%20microservices.
https://datatracker.ietf.org/doc/html/rfc8705
https://www.mysql.com/
https://www.cloudzero.com/blog/netflix-aws
https://www.cloudzero.com/blog/netflix-aws
https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/
https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/oauth2_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/oauth2_filter
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/andikleen/pmu-tools
https://github.com/andikleen/pmu-tools
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/proto_message_extraction_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/proto_message_extraction_filter

Understanding Sidecars in Cloud Orchestration SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

[75] Prateek Sahu, Lucy Zheng, Marco Bueso, Shijia Wei, Neeraja J Yadwadkar, and
Mohit Tiwari. Sidecars on the central lane: Impact of network proxies on
microservices. arXiv preprint arXiv:2306.15792, 2023.

[76] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max Kontorovich, Josh
Kirstein, Margot Leibold, Dimitrios Skarlatos, Hitesh Khandelwal, and Chun-
qiang Tang. ServiceRouter: Hyperscale and minimal cost service mesh at meta.
In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23), pages 969–985, Boston, MA, July 2023. USENIX Association.

[77] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg, and
Boris Grot. Lukewarm serverless functions: Characterization and optimiza-
tion. In Proceedings of the 49th Annual International Symposium on Computer
Architecture, ISCA ’22, page 757–770, New York, NY, USA, 2022. Association for
Computing Machinery.

[78] David Schall, Andreas Sandberg, and Boris Grot. Warming up a cold front-end
with ignite. In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 254–267, 2023.

[79] David Schall, Andreas Sandberg, and Boris Grot. Warming up a cold front-
end with ignite. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’23, page 254–267, New York, NY, USA,
2023. Association for Computing Machinery.

[80] Korakit Seemakhupt, Brent E Stephens, Samira Khan, Sihang Liu, HassanWassel,
Soheil Hassas Yeganeh, Alex C Snoeren, Arvind Krishnamurthy, David E Culler,
and Henry M Levy. A cloud-scale characterization of remote procedure calls.
In Proceedings of the 29th Symposium on Operating Systems Principles, pages
498–514, 2023.

[81] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural
implications of function-as-a-service computing. In Proceedings of the 52nd
annual IEEE/ACM international symposium on microarchitecture, pages 1063–
1075, 2019.

[82] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina Delim-
itrou, Robbert Van Renesse, and Hakim Weatherspoon. X-Containers: Breaking
Down Barriers to Improve Performance and Isolation of Cloud-Native Contain-
ers. In Proceedings of the Twenty Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), April
2019.

[83] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for efficient
stateful serverless computing. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 419–433, 2020.

[84] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish
Shaikh, Shivaram Venkataraman, and Aditya Akella. Atoll: A scalable low-
latency serverless platform. In Proceedings of the ACM Symposium on Cloud
Computing, pages 138–152, 2021.

[85] cirospaciari/socketify.py: Bringing http/https and websockets high performance
servers for pypy3 and python3. https://github.com/cirospaciari/socketify.py.

[86] Akshitha Sriraman and Thomas F Wenisch. 𝜇 suite: a benchmark suite for mi-
croservices. In 2018 IEEE International Symposium on Workload Characterization
(IISWC), pages 1–12. IEEE, 2018.

[87] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and Josep Torrellas. umany-
core: A cloud-native cpu for tail at scale. In Proceedings of the 50th Annual

International Symposium on Computer Architecture, ISCA ’23, New York, NY,
USA, 2023. Association for Computing Machinery.

[88] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas. Mxfaas:
Resource sharing in serverless environments for parallelism and efficiency. In
Proceedings of the 50th Annual International Symposium on Computer Architecture,
ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery.

[89] Tap — envoy 1.32.0-dev-bfa0e0 documentation. https://www.envoyproxy.io/
docs/envoy/latest/configuration/http/http_filters/tap_filter.

[90] FreeWheel Biz-UI Team. Microservice traffic management. In Cloud-Native
Application Architecture: Microservice Development Best Practice, pages 109–152.
Springer, 2024.

[91] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and Christof
Fetzer. Clemmys: Towards secure remote execution in faas. In Proceedings of the
12th ACM International Conference on Systems and Storage, pages 44–54, 2019.

[92] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 559–572, 2021.

[93] giltene/wrk2: A constant throughput, correct latency recording variant of wrk.
https://github.com/giltene/wrk2.

[94] Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale analysis of hundreds of
in-memory key-value cache clusters at twitter. ACM Transactions on Storage
(TOS), 17(3):1–35, 2021.

[95] Jie Zhang, Hongjing Huang, Lingjun Zhu, Shu Ma, Dazhong Rong, Yijun Hou,
Mo Sun, Chaojie Gu, Peng Cheng, Chao Shi, et al. Smartds: Middle-tier-centric
smartnic enabling application-aware message split for disaggregated block
storage. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, pages 1–13, 2023.

[96] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Ed Suh, and Christina Delim-
itrou. Sinan: Data-Driven Resource Management for Interactive Microservices.
InWorkshop on ML for Computer Architecture and Systems (MLArchSys), June
2020.

[97] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal,
Timothfy Sherwood, and Milind Chabbi. {CRISP}: Critical path analysis of
{Large-Scale} microservice architectures. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 655–672, 2022.

[98] Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, and Josep Torrellas.
Everywhere all at once: Co-location attacks on public cloud faas. In Proceedings
of the 29th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 1, ASPLOS ’24, page 133–149,
New York, NY, USA, 2024. Association for Computing Machinery.

[99] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,
Xuan Kelvin Zou, XiongChun Duan, Peng He, Arvind Krishnamurthy, Matthew
Lentz, Danyang Zhuo, and Ratul Mahajan. Dissecting overheads of service
mesh sidecars. In Proceedings of the 2023 ACM Symposium on Cloud Computing,
SoCC ’23, page 142–157, New York, NY, USA, 2023. Association for Computing
Machinery.

[100] Openzipkin · a distributed tracing system. https://zipkin.io/.

https://github.com/cirospaciari/socketify.py
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/tap_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/tap_filter
https://github.com/giltene/wrk2
https://zipkin.io/

SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands P. Sahu, S. Wei, N. J. Yadwadkar, M. Tiwari

re
q-

in
fo

-e
g1

fo
-in

1
fo

-e
g2

fo
-in

2
re

q-
eg

re
q-

in
re

q-
eg

re
q-

in
fo

-e
g1

fo
-in

1
re

q-
eg

re
q-

in
re

q-
eg

100

200

300

400

500

600

700
la

te
nc

y
(u

s)
in
eg
fo

product pagerating review detail

Us
er

Ke
rn

el

userspace
kernel
Ingess
Egress
Fanout

Figure 13: Sidecar latency per request in Bookinfo. Kernel
accounts 20% latency; userspace don’t vary across services.

A Appendix: System Level Implications
This section explores system behavior across various deployment
settings to isolate and quantify the variability in performance degra-
dation in sidecars to provide visibility into the trade-offs of using
service meshes across various operational settings.

For these experiments, we use three benchmark workloads and
two benchmark configurations for sidecars as provided by Istio [41].

W1 BookInfo [8]: Small library web-app consisting of 4 services that
allows users to get reviews and information about books.

W2 Online Boutique [66]: E-commerce app consisting 11 services
that allows browsing, shopping cart, and a payment page.

W3 Hotel Reservation [35]: An app with 17 services providing hotel
search based on location, rates and availability.

C1 Default: Configuration combines HTTP-based RBAC filters, stats
collection, header management [20], and some request tracing.

C2 Demo: Showcase configuration that combines all ‘Default’ filters
while logging and tracing all requests.

A.1 Deployment configurations and settings
Weevaluate how real world datacenter settings and operator choices
impact the overall service level objective using our benchmark ap-
plications. In Fig. 5, we analyze P90 latency and throughput over-
heads as cluster sizes scale from 1 to 5 nodes. Latency remains
consistent but slightly increases due to cross-node network factors
while throughput slightly degrades at larger scales, independent of
sidecars. To quantify penalties, we measure CPU instructions and
cycles, which reflect the additional work and resources consumed
in Fig. 12. Experimental setups compare benchmark applications
with and without service mesh, where sidecars are configured with
no traffic control policy with minimal TCP-based access control
and observability policy – ensuring similar application behavior.

Application behavior remains steady across cluster sizes if nodes
have sufficient resources. However, deployment settings show vari-
able degradation. The "Default" configuration incurs 20–85% cycle
and 13–75% instruction penalties, while the "Demo" configuration
nearly doubles these overheads. Sidecar performance remains con-
sistent across cluster sizes for each benchmark but varies across
applications and configurations. Instructions and cycles emerge as
key metrics for precisely and uniformly measuring overheads.

ba
se

lin
e

de
fa

ul
t

de
m

o
ba

se
lin

e
de

fa
ul

t
de

m
o

ba
se

lin
e

de
fa

ul
t

de
m

o
ba

se
lin

e
de

fa
ul

t
de

m
o

ba
se

lin
e

de
fa

ul
t

de
m

o
ba

se
lin

e
de

fa
ul

t
de

m
o

ba
se

lin
e

de
fa

ul
t

de
m

o
ba

se
lin

e
de

fa
ul

t
de

m
o

ba
se

lin
e

de
fa

ul
t

de
m

o0

20

40

In
st

ru
ct

io
n

(in
 M

)

0

20

40

60

Cy
cle

 (i
n

M
)

1 2 5 1 2 5 1 2 5
Hotel Reservation Book Info Online Boutique

Nodes
sidecar
app

cycles

Figure 12: Instructions and cycle counts across different clus-
ters and different sidecar configurations shows constant over-
head across cluster sizes, but varies across different configu-
ration profiles. Instruction overhead vary from 13%-76% for
‘default’ and 23%-162% for ‘demo’ while cycles see a range of
21%-91% for ‘default’ and 28%-128% for ‘demo’.

A.2 Application Topology
Here we evaluate how service topologies of applications might im-
pact sidecar latency. Fig. 13 plots the latency distribution of system-
calls for all invocations of sidecar instances in the BookInfo appli-
cation. We use request_in(e-)gress and fanout_in(e-)gress
terms to indicate ingress and egress paths to and from a service
instance from the downstream client or upstream instances respec-
tively. We find that requests typically take between 200-250 ms for
a sidecar invocation, except ProductPage. ProductPage’s sidecar
that handles external ingress, adds 200–400 ms for socket setup and
longer egress times due to a 6KB HTML payload.

Sidecar invocation counts per user request vary for different
services in an application, e.g. 6 for ProductPage, 4 for Review and
2 each for Rating and Detail in BookInfo app. Fig. 14 shows average
instructions and cycles per sidecar invocation across benchmarks,
confirming uniform performance penalties across services. "De-
fault" configurations incur 200–300K instructions and 500–600K cy-
cles, while "Demo" configurations face higher penalties of 400–500K
instructions and 650–800K cycles. Frontend and Search (Hotel Reser-
vation) and Review (BookInfo) are outliers due to amortization
effects due to higher invocation counts, unlike ProductPage and
Home, which handle HTML payloads, raising their averages.
Takeaway: Performance varies by topology and call path but side-
car latency is predictable per configuration. Overall penalty corre-
lates with sidecar policies and configurations.

fro
nt

en
d

se
ar

ch ge
o

ra
te

pr
of

ile
re

se
rv

e
pr

od
pa

ge
re

vi
ew

ra
tin

g
de

ta
il

ho
m

e
cu

rre
nc

y
pr

od
uc

t
ca

rt
ad

s

fro
nt

en
d

se
ar

ch ge
o

ra
te

pr
of

ile
re

se
rv

e
pr

od
pa

ge
re

vi
ew

ra
tin

g
de

ta
il

ho
m

e
cu

rre
nc

y
pr

od
uc

t
ca

rt
ad

s

 Default Demo

0
2
4
6
8

10

in
st

ru
ct

io
ns

 (x
10

6)

0

5

10

15

cy
cle

s (
x1

06)
hotel_resv book_info ol_boutique hotel_resv book_info ol_boutique

inst cycle

Figure 14: Instructions and latency across different configura-
tions per sidecar invocation show roughly similar overhead
independent of service.

Understanding Sidecars in Cloud Orchestration SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands
TC

P
Ro

ut
er

Ac
ce

pt
 A

ll
Re

je
ct

 1
Re

je
ct

 1
00

Re
je

ct
 1

00
0

SQ
L

TL
S

HT
TP

 R
ou

te
r

He
ad

er
 R

ea
d

Ra
te

-L
im

it
IP

 Ta
g(

1)
IP

 Ta
g(

5)
IP

 Ta
g(

10
)

Lo
gg

in
g

HT
TP

 M
ix

 2

0

25

50

75

Ca
ch

e
M

PK
I Haswell

0

5

10

Br
an

ch
 M

PK
IL1-I Branch

Figure 15: iCaches have high MPKIs.
Branch predictors have low MPKI.

TC
P

Ro
ut

er
Ac

ce
pt

 A
ll

Re
je

ct
 1

Re
je

ct
 1

00
Re

je
ct

 1
00

0
SQ

L
TL

S
HT

TP
 R

ou
te

r
He

ad
er

 R
ea

d
Ra

te
-L

im
it

IP
 Ta

g(
1)

IP
 Ta

g(
5)

IP
 Ta

g(
10

)
Lo

gg
in

g
HT

TP
 M

ix
 2

0

2

4

Cy
cle

 P
en

al
ty

20
.4

4%
18

.9
1%

18
.7

9%
20

.1
5%

11
.3

6%
26

.0
5%

20
.5

7%
23

.0
2%

24
.6

9%
24

.2
%

22
.8

%
22

.5
4%

22
.2

3%
22

.2
7%

21
.1

4%

×105 HaswellI$ Fetch Stall
Total Cycles

Figure 16: Haswell systems see 17-21%
of cycle stalls due to iCache miss.

TCP Rej. 100 TLS HTTP Log HTTP Mix
0

20

40

60

80

100

Cy
cle

s(
%

) -
Ha

sw
el

l

low(20%)
medium(50%)
high(100%)

Front End
Bad Speculate

Back End
Retiring

Figure 17: Haswell processors exhibit
frontend and backend behavior similar
to Icelake servers.

B Appendix: Extended Characterization Results
B.1 Comparing hardware generations
We use this section to present our microarchitectural evaluations
on an older Haswell machine and compare them to the results we
previously discussed for Icelake servers. Figs. 15 to 17 plots branch
and instruction cache miss behavior, indicating significant fron-
tend stalls and bottlenecks. Although, these trends align with our
analysis in Section 5.3, we would like to point to a few interesting
observations.

We note that the iCache fetch stalls for Haswell are much higher
(12-25%) compared to newer generation processors. However, the L1
iCache MPKI trends lower than Icelake servers. This indicates that
better predictors and prefetchers do not work well for infrastructure
components like sidecars, and might even contribute to larger cache
pollution. We also note that significantly larger private L2 caches
helps with such workloads that are common, repetitive and have
large instruction footprints.

B.2 Message Size
Across our benchmark applications, we note a diverse range of
message sizes from a few bytes of message for Details (in BookInfo)
to 532KB of HTML data for Online Boutique’s home page. This
section provides visibility into the performance overhead experi-
enced by the sidecar components as we vary the message sizes.
Our microbenchmarks evaluate a large range of messages starting
from 16KB up to 1MB. Figure 18 plots the number of instructions
and cycles as we increase the payload sizes across a set of filter
configurations. At large payload sizes, we see an interesting inter-
play between the performance impact and the underlying micro-
architecture. For brevity, we omit components that do not show
much variance. “Protocol Parsing” also shows low variability since
these program phases mainly processes the packet header portions
of the messages which remains unaffected in this setting.
Filter: Both the HTTP and TCP filters work on packet headers
and see no variance with message sizes. Data intensive configu-
rations like TLS encounter a steep increase in computation and
latency since this filter works on the entire payload message for
encryption/decryption before further processing.
OS Read/Writes: OS read and write functions also show similar
exponential growth in instructions and cycles. However, we notice

that the IPC remains fairly consistent until 16KBmessage size, when
it starts to sharply decrease to almost 0.25 IPC for 1MB payloads.
This is interesting because the IPC drop aligns with our cache sizes.
Both kernel read and write functions iterate over the entire packet
while copying between kernel and userspace buffers. This results in
both cold and capacity misses in private data caches as we increase
the packet sizes above 16KB. TLS write filter deviates from the
observed trends. With a single application-sidecar instance, packet
decryption happens at kernel read on req-ingress, and encryption
happens at kernel write on req-egress. Only the response from
sidecar to client undergoes a variable message encryption which
gets reflected on the performance of kernel write. Since this is the
only filter that actively works on data, the data is actually in the
caches when the kernel writes attempts to copy and hence it sees
an elevated and constant IPC.
Sidecar Read/Writes: These functions mainly initiate a read/write
system call on event triggers and updates buffer data for further
processing in the sidecar. As they do not work on the data them-
selves, we see a nearly constant IPC. With a slightly predictable
loop behavior with higher packet sizes, we notice an uptick in the
IPC across different configurations.

104

105

Sidecar Read
TCP Rej. 100 TLS HTTP Log HTTP Mix IPC

Cy
cle

s (
Lo

g
Sc

al
e)

105

Kernel Read

IP
C

IP
C

IP
C

IP
C

IP
C

IP
C

104

105 Sidecar Write

105

106

Kernel Write
IP

C
IP

C
IP

C
IP

C
IP

C
IP

C

104

Packet Processing

105

Protocol Parsing

105

Payload Sizes [16B,64B,256B,1KB,4KB,16KB,64KB,256KB,1MB]

Filter

Figure 18: Impact of payload size on configurations: Com-
pute heavy filters (TLS) see exponential overheads. Perfor-
mance/IPC drops at cache level sizes during data copy de-
pending on data use in the sidecars.

	Abstract
	1 Introduction
	2 Background
	2.1 Microservices, Functions and Service Meshes
	2.2 Sidecars

	3 Motivation
	3.1 `Side'cars are often the dominant modules
	3.2 Sidecar's performance variance

	4 Experimental Setup
	5 Characterization and Evaluation
	5.1 Application Topology
	5.2 Configuration Microbenchmarking
	5.3 Micro-architectural Investigation
	5.4 Dynamic code analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix: System Level Implications
	A.1 Deployment configurations and settings
	A.2 Application Topology

	B Appendix: Extended Characterization Results
	B.1 Comparing hardware generations
	B.2 Message Size

