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Abstract—Accelerators used for machine learning (ML) infer-
ence provide great performance benefits over CPUs. Securing
confidential model in inference against off-chip side-channel
attacks is critical in harnessing the performance advantage in
practice. Data and memory address encryption has been recently
proposed to defend against off-chip attacks.

In this paper, we demonstrate that bandwidth utilization on the
interface between accelerators and the weight storage can serve
a side-channel for leaking confidential ML model architecture.
This side channel is independent of the type of interface, leaks
even in the presence of data and memory address encryption and
can be monitored through performance counters or through bus
contention from an on-chip unprivileged process.1

I. INTRODUCTION

Deep learning model inference services have spawned a
domain-specific computing revolution. High performance ML
inference accelerators in the form of neural processing units
(NPU) are being developed by both industry [2], [14], [17] and
academia [8], [11], [16]. NPUs may be integrated either in the
system-on-chip (SoC) [2] or connected to system bus [14].
Inference-as-a-service (InFaaS) [19] is deployed by cloud
providers like Amazon Sagemaker [1] running user inference
on ML accelerators. This incentivizes ML model vendors to
host trained models on cloud platforms and provide services on
confidential user data like face recognition and organizational
data like disease classification on patient private data.

From the security perspective, the model vendor requires
the cloud provider to protect the confidentiality of model
parameters as well as the layer dimensions. Prior work [5],
[18], [20] show how knowledge of layer dimensions can be
used to steal a victim’s ML IP by reconstructing a model with
similar accuracy. An attacker can further use a stolen model
to launch adversarial attacks on the victim system [15], [21].

Temporal and spatial sharing of NPUs by multiple appli-
cations has been proposed to improve system scalability and
overall inference time [9], [10]. This allows multiple tenants
sharing the memory bus to infer victim model utilization
through bandwidth contention channels. To support such
sharing, the cloud hypervisors collect NPU resource utilization
information (e.g. memory bus utilization) for each tenant for

1Presented at Secure and Private Systems for Machine Learning (SPSL
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Fig. 1: Different steps of an end-to-end bandwidth utilization
attack. (1) Collect bandwidth utilization; (2) Classify model layer
boundary and layer type; (3) Use black box attack to reconstruct
model or perform adversarial attack.

providing quality-of-service (QoS) guarantees, memory traffic
and infrastructure management.

In this paper, we develop a new attack based on observing
the NPUs bandwidth utilization. We highlight that observing
this side channel alone can leak the ML model structure even
when off-chip data and addresses are encrypted. Summarizing
our key contributions:
• We introduce the bandwidth utilization side-channel on

NPUs to leak ML model dimensions.
• A proof-of-concept exploit on the DRAM interface against

6 image classification models and explore several classifier
to identify model layer boundaries and layer dimension.

• We propose possible defences to create a demand agnostic
bandwidth utilization. Software defence leads to a 1.6x
increase in overhead while hardware countermeasures to
generate constant memory traffic has 14.6% to 19.3%
overhead.

II. OVERVIEW AND BACKGROUND

Figure 1 shows the different stages of an end-to-end attack
with utilization bandwidth as a side-channel. The memory bus
connecting the NPU and the model weight storage reveals layer
variations through the bandwidth utilization side channel. Our
attack receives the bandwidth utilization trace and performs
two classification steps: (1) Detect layer boundaries with a
boundary detector (Section III-D2); (2) Split the time-series
along layer boundaries to detect the layer dimensions with
type classifier (Section III-D3). The number of layers and its
dimension can be fed to black box attacks for model weights
reconstruction or an adversarial attack (Section II).
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NPU to memory interface. The NPU accelerator can be resi-
dent on the system-on-chip (SoC) with memory bus connected
directly to CPU last-level cache (LLC) as in ARM Ethos [2]
or connected with an on-chip eDRAM as in DaDianNao [8].
Other accelerators [14] are connected off-chip performing direct
system memory accesses. All the model weights cannot be
loaded upfront due to limited NPU internal memory. This
motivates tiling the weights for each DNN layer to fit in
the NPU and loading them as required, therefore creating
bandwidth variation irrespective of the NPU memory interface.
Tile size variations. The model layer dimensions depend on
the model configuration like number of filters, height, width
and channels. The tiling is not only devised on these four
dimensions but also on the data locality of the input feature
maps and the intermediate partial sums. Moreover, the number
and type of operation for each layer are different. Convolution
and dense layers perform matrix multiplication while pooling
and activation perform ALU operations like max, min or
addition leading to parameter variations for each layer.
Black box attacks. A large body of work [5], [18], [20]
recreates a model having similar classification accuracy as the
victim model with only the model dimension. As a first step,
the attacker initializes a model with victim model dimension.
Then, she sends multiple inference requests to the victim
model and uses the classification to label the data creating
a dataset. This dataset is used to train the attacker’s model
until it achieves similar accuracy as the victim model. prior
work [15], [21] further illustrates use of reconstructed model
to generate adversarial examples for the victim model.

III. BANDWIDTH UTILIZATION ATTACK

A. Threat Model

We adopt a threat model similar to trusted execution
environments (TEE) like Intel SGX [3]. Specifically, we assume
that the underlying privileged software is untrusted, malicious
co-tenant may share the same NPU and the system may be
exposed to physical attacks. We assume the techniques in secure
processors are adopted by the NPU providers. Beyond memory
encryption and integrity checks, we also assume memory
address encryption is employed as in [4], [6], thus restricting
the adversary to only observe the bandwidth utilization.

Additionally, we assume that the victim uses the optimal tile
size for performance, and that the adversary can perform offline
profiling to collect all possible layer and tile configuration
characteristics for training her classifier(s).

B. Point of Leakage

Bandwidth utilization can be observed by malicious hy-
pervisors or co-executing tenants. Cloud hypervisors collect
traffic statistics for each application for load balancing and
congestion control. Considering the threat model of a malicious
cloud hypervisor, high-precision counters can be used to collect
bandwidth utilization of each tenant. Such widgets are (or can
be) placed at (1) the Last-Level Cache (LLC) interface, (2) the
DMA engine of the NPU, or (3) the DRAM controller.

Unprivileged co-executing tenants share the same memory
interface. Malicious tenants in the same NPU can constantly
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(b) Memory bandwidth of the 5th layer in VGG16.

Fig. 2: Different layers in vgg16 network utilizes different memory
bandwidth, while bursts within each layer show number of tiles.

monitor the bandwidth and record victim utilization from
bandwidth drops due to contention. This drop in bandwidth
is proportional to the victim load request size scheduled by a
physically shared NPU DMA controller.

C. Example of Bandwidth Variation at DRAM Interface

As mentioned in Section II, tile execution of different layers
on the NPU loads tiled matrix weights from either LLC or main
memory. Figure 2a presents the layer-dependent load bandwidth
variation for the model weights in a VGG16 model. There
are three types of bandwidth variations across adjacent layer
boundaries: (T1) Layers with different tile sizes (e.g. layer
2 and 3) where the filter size is different with a pooling
layer in between. (T2) Layers with the same sized tiles but
having different number of tiles (e.g. layer 1 and 2) which is
possible with adjacent layer having the same filter size but
differing in the number of channels. (T3) Identical adjacent
layers (e.g. layer 10 and 11) with identical sized filters having
the same number of channels as in some deeper resnet layers.

Figure 2b zooms into the 5th layer revealing the number of
tiles. Due to tile size optimization, the number of tiles and
the bandwidth utilization vary across model layers depending
on their dimensions. There are finite tiling schemes with each
having a unique signature of bandwidth and execution time.

D. Attack Demonstration

As a proof-of-concept, we demonstrate the bandwidth
utilization attack on the DRAM interface and model the
adversary as a malicious hypervisor.

1) Experimental Setup: We prototype the VTA [16] ML
inference accelerator on a Xilinx Pynq-Z1 fpga running at 100
MHz. VTA is an fpga implementation of an NPU with the
widely used TVM [7] software stack. Similar to an NPU, the
VTA has its own instruction set consisting of load, compute
and store operations. We augment the VTA DMA controller
with a memory transaction counter to log the read transactions.



The model weights are not updated at inference time, hence
monitoring only read transaction is enough for inferring the
model dimensions. The counter accumulates the number of
bytes transferred for each DMA transaction and stores in a
memory-mapped register, read by the runtime driver at 250KHz.

We run six image classification DNN inference models,
namely, VGG-11, VGG-16, Alexnet, Resnet-18, Resnet-34
and Resnet-50. The memory utilization shape for each of the
workload is shown in Figure 3. These traces are taken with the
NPU connected to system memory bus. To validate possibility
of attack on the LLC interface, we have also collected traces
with NPU connected to LLC through accelerator coherency
port (ACP). Those traces also have similar demand signature
and are not shown due to space constraints.

For layer boundary detection, we use precision and recall
to evaluate the detector performance. Precision indicates the
fraction of correctly detected boundaries out of the total
detected boundaries. The higher the precision is, the less
false positive claims the detector makes. Recall measures
the fraction of correctly detected boundaries out of the all
true boundaries. The higher the recall is, the less correct
layer boundaries the detector misses. To evaluate layer type
classification performance, we use accuracy which indicates
the ratio of correctly classified samples out of all samples. We
did not use accuracy for layer boundary detector because the
number of non-boundary inputs outnumbers the number of
boundary inputs by orders of magnitude. Using accuracy may
present a falsely satisfying result.

2) Layer Boundary Detection: A single DNN model con-
sists of multiple layers. The first step in the attack is layer
boundary detection. Prior arts [12], [13] demonstrated that the
read-after-write (RAW) pattern on the address trace reveals
the layer boundaries accurately. However, our threat model
restricts attackers to use bandwidth utilization variation rather
than the address trace.

Fine-grained observations enable attackers to model each
layer as a time-series of bandwidth information. To identify
layer boundaries, the adversary clusters the observed time-
series trace into different classes. First, we collect statistics like
total data transferred per sampling window, median and peak
bandwidth, bandwidth standard deviation as well as frequency
domain signals extracted using discrete wavelet transform
(DWT) to perform feature extraction and selection. Second, the
adversary builds a bag-of-words model with the extracted fea-
tures, a popular Natural Language Processing (NLP) technique,
on sliding windows of the trace. The combination of a bag-of-
words model and sliding windows enables the attacker classifier
to obtain both the frequency- and time-domain information of
the collected trace. Then, the attacker performs clustering to
obtain the potential layer boundary candidates. Subsequently,
offline profiled termination timings of all possible layers are
used to validate these candidates to reduce false positives.

The boundary detection results are shown in Table I. The
table heading lists the different benchmarks with the total
number of layer boundaries. Adjacent layers with a different
shape (T1 in III-C) are identified as ‘easy’ because they
utilize different memory bandwidth and are therefore easy to

AlexNet VGG11 VGG16 ResNet18 ResNet34 ResNet50

easy

3

all

4

easy

5

all

6

easy

8

all

11

easy

22

all

23

easy

24

all

36

easy

50

all

52

precision 1 1 1 1 1 1 0.69 0.64 0.66 0.72 0.33 0.33

recall 0.75 1 0.83 1 0.73 1 0.96 1 0.67 1 0.96 1

TABLE I: Precision and recall when identifying layer boundaries
for each network. easy boundaries refer to ones between adjacent
layers with different utilization shapes, while all includes all layer
boundaries.

AlexNet VGG11 VGG16 ResNet18 ResNet34 ResNet50 Overall

Execution
time only 1 1 0.958 0.896 0.851 0.824 0.826

SVM w/
(w/o) DWT 1 1 1 1 1 0.811 0.927

MLP w/
(w/o) DWT 1 1 1 1 1

(0.986)
0.868

(0.849)
0.949

(0.934)

CNN w/
(w/o) DWT 1 1 1 1 1 0.877

(0.830)
0.953

(0.934)

TABLE II: Layer type classification accuracy using unshaped
traffic assuming perfect layer boundary detection. The last three
rows also show results without DWT signals in parentheses.

detect. The classifier can detect easy boundaries with 100%
precision for AlexNet, VGG11 and VGG16. Overall, 73.9%
of layer boundaries are detected across our six workloads.
Note that for ResNet models, the residual layers are very short,
which makes boundaries hard to detect due to our choice of
sliding windows size. We leave these hyperparameter tuning
(e.g. sliding window size) for future work.

3) Layer Type Classification: Similar to layer boundary
detection, we include frequency domain signals from DWT to
capture tile bandwidth signatures for layer type classification.
DWT detects change in bandwidth across tiles at layer boundary.
The wavelets also captures sharp changes in bandwidth, which
is useful for tile boundary detection.

We test victim memory traffic time-series using three classi-
fiers: Support Vector Machine (SVM), Multilayer Perceptron
(MLP), and Convolutional Neural Network (CNN), each trained
on either the time-series features for potential layers or on the
features extracted from DWT.

Table II shows the layer-type classification accuracy for
each tested model, using bandwidth trace assuming perfect
identification of layer boundaries. The last column (Overall)
summarizes the weighted accuracy of all layers in all models.
The first row shows classification accuracy merely using the
termination timing of each layer. This is a baseline accuracy
for any attacker with the knowledge of the layer boundaries
(execution timing for each layers). All the layers of AlexNet and
VGG-11 are identifiable using this basic classifier. These work-
loads have few layers and all the layers differ in their execution
time. Therefore, merely having the layer termination time is
sufficient to classify the layers. The accuracy decreases for
deeper models like ResNets with identical adjacent layers (T3
in III-C). The 2-4th rows show accuracy of the three evaluated
layer-type classifiers. From execution-time based classifier
to bandwidth-based classifiers, the accuracy jumps from
84% to 93% on average. From SVM to CNN, accuracy
improves with increasing classifier complexity. In addition,
including frequency domain signals improves the classifier,
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Fig. 3: The bandwidth variations on the DRAM interface during inference execution of different ML models.

resulting in an accuracy of 95.3%. This is because different
tile size configurations have different compute/bandwidth ratios.

IV. COUNTERMEASURES

Bandwidth utilization channel leaks because of the layer
dependent bandwidth utilization during ML inference. This can
be prevented by disabling tile-size optimization or shaping the
shared interface traffic (via pure software or software-hardware
co-design).

A. Disabling tile size optimization

Constant tile size across all layers within a model can make
the effective bandwidth constant throughout the model execu-
tion. However, disabling this optimization leads to inference
time overhead and lower utilization of NPU resources including
compute, on-chip storage, and off-chip memory bus bandwidth.
To illustrate the wasted performance opportunity, we explore
execution performance of 800 distinct tile-size configurations
for each of the models. The overhead of each configuration
with respect to the most performant configuration is plotted
in Figure 4. The performance overhead of the median
configuration is, on an average, 1.2X more compared
to the best case. The performance overhead varies up
to 1.6 - 2.0X in certain tile configurations. The resulting
performance overhead impacts the service-level agreement
(SLA) and causes under-utilization of cloud resources. This is
due to the large variation in the height, width and number of
channels for different layers of the DNN model.
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Fig. 4: Box plot showing performance variation of 800 tile size
configuration for each workload

B. Memory traffic shaping

The memory trace could be made independent of the demand
trace. The CSP can choose a predefined memory utilization
independent from the execution model. The memory controller
interleaves the real read requests with fake transactions if the
demand falls below the expected bandwidth. On the other hand,
demand requests need to be throttled when utilization exceeds
the assigned bandwidth. The predefined memory trace can be a
fixed bandwidth trace or some other model demand independent
pattern. The write requests can be sent at regular intervals.
Encrypted stores with valid flag can distinguish between real
and fake transactions.

To defend against bandwidth utilization attack on ML
inference, we modified the accelerator design to split each
transaction to multiple transactions of fixed size. The fixed size
transactions were sent at an equal interval of time resulting in a
constant bandwidth. Equal-sized splits are created by padding
the unequal transactions. In case of memory idle intervals, fake
transactions are sent to fill the gap. The tile size optimization
is performed based on the fixed bandwidth to obtain the best
tile configuration for each layer.

The precision of layer boundary detection reduces drastically
as shown in Table III. The boundary detection classifier has
increased sensitivity to have enough coverage as visible from
the recall numbers. NA in the table for ResNet models indicate
the attacker’s failure to identify the true boundaries even
with 10000x false positives (precision < 0.0001). The layer
construction is infeasible with such high false positives for the
shaped constant trace. The overall precision drops to less
than 0.01%. The model type classifier fails with such low
precision on layer boundary detection thwarting the attack.

With a specific bandwidth choice, the tradeoff is between
the amount of wasted memory bandwidth and the performance
overhead caused by request throttling. With a fixed bandwidth
of 200 MB/s, the geomean overhead is 14.6% with worst
case overhead of 19.3%.

V. RELATED WORK

Recent works [12], [13] illustrate that memory access
patterns reveal a DNN model structure by snooping the off-chip
address bus. We demonstrate a new alternative side-channel,
using bandwidth variation, for leaking model dimensions even
in the presence of data and address encryption. Observing



AlexNet VGG11 VGG16 ResNet18 ResNet34 ResNet50

easy

3

all

4

easy

5

all

6

easy

8

all

11

easy

22

all

23

easy

24

all

36

easy

50

all

52

precision 0.03 0.03 0.01 0.01 0.0027 0.00011 NA NA NA NA NA NA

recall 0.75 1 0.83 1 0.73 1 NA NA NA NA NA NA

TABLE III: Memory traffic shaping with constant bandwidth
reduces the precision of layer boundary detection drastically for
all models

bandwidth variation is feasible even by on-chip unprivileged
malicious co-tenants without the use of performance counters.

Memory traffic shaping as a defence mechanism is illustrated
in prior works like MITTS [23] or camouflage [22]. These
are applicable to general-purpose workloads with a runtime
shaping logic. However, the memory demand requests for a
DNN workload are known at compile time. We demonstrate
that the compiler can choose a traffic pattern and perform the
tile size analysis to improve the overall inference latency.

VI. CONCLUSION

This paper studies the bandwidth utilization side-channel to
infer confidential model structure. The channel can be observed
by performance counters or even by unprivileged co-executing
tenant through traffic contention. This work shows that model
structure can be leaked even with an encrypted address trace.
The study discusses potential countermeasures and highlights
one that leverages the knowledge of the inference workload at
compile time to tune the tiles accordingly and improve the bus
utilization while closing the bandwidth utilization channel.
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